湖北省咸宁市2026届数学高二上期末复习检测模拟试题含解析_第1页
湖北省咸宁市2026届数学高二上期末复习检测模拟试题含解析_第2页
湖北省咸宁市2026届数学高二上期末复习检测模拟试题含解析_第3页
湖北省咸宁市2026届数学高二上期末复习检测模拟试题含解析_第4页
湖北省咸宁市2026届数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省咸宁市2026届数学高二上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.2.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.3.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.4.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.75.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.6.已知向量,.若,则()A. B.C. D.7.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.8.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.9.已知数列是首项为,公差为1的等差数列,数列满足.若对任意的,都有成立,则实数的取值范围是()A., B.C., D.10.在等比数列中,,,则()A. B.或C. D.或11.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件12.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.14.设数列的前n项和为,若,且是等差数列.则的值为__________15.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.16.双曲线的离心率为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)小张在2020年初向建行贷款50万元先购房,银行贷款的年利率为4%,要求从贷款开始到2030年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)18.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.19.(12分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.20.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由21.(12分)已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式22.(10分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.2、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.3、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A4、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D5、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.6、A【解析】根据给定条件利用空间向量平行的坐标表示直接计算作答.【详解】向量,,因,则,解得,所以,B,D都不正确;,C不正确,A正确.故选:A7、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题8、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.9、D【解析】由等差数列通项公式得,再结合题意得数列单调递增,且满足,,即,再解不等式即可得答案.【详解】解:根据题意:数列是首项为,公差为1的等差数列,所以,由于数列满足,所以对任意的都成立,故数列单调递增,且满足,,所以,解得故选:10、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.11、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.12、A【解析】根据两直线平行的充要条件求出a的值,然后可判断.【详解】当时,,所以两直线平行;若两直线平行,则且,解得或,所以,“”是“直线与直线平行”的充分不必要条件.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据求出圆的方程,再由的面积的最大值结合离心率求出和的值,进而求出面积的最小值.【详解】解:由题意,设,,因为即两边平方整理得:所以圆心为,半径因为的面积的最大值为3所以,解得:因为椭圆离心率即,所以由得:所以面积的最小值为:故答案为:.【点睛】思路点睛:本题先根据已知的比例关系求出阿波罗尼斯圆的方程,再利用已知面积和离心率求出椭圆的方程,进而求得面积的最值.14、52【解析】根据给定条件求出,再求出数列的通项即可计算作答.【详解】依题意,因是等差数列,则其公差,于是得,,当时,,而满足上式,因此,,所以.故答案为:5215、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:16、【解析】∵双曲线的方程为∴,∴∴故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、每年至少要还6.17万元.【解析】根据贷款总额和还款总额相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【详解】50万元10年产生本息和与每年还x万元的本息和相等,故有购房款50万元十年的本息和:50(1+4%)10,每年还x万元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,从而有50(1+4%)10=,解得x≈6.17,即每年至少要还6.17万元.18、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的距离为.【小问2详解】设,,联立,,,,,,解得19、(1)略;(2)【解析】(1)推导出BD⊥BC,PB⊥BC,从而BC⊥平面PBD,由此能证明PD⊥BC.(2)利用等体积求得点B到面的距离【详解】(1)∵在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC为等边三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD⊂平面PBD,∴PD⊥BC(2)由(1)知,,故故得点B到面PCD的距离为【点睛】本题考查线线垂直的证明,考查点面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题20、(1)2;(2)存在,.【解析】(1)对函数求导,利用得的值;(2)讨论和分离参数,构造新函数求解最值即可求解【详解】解:(1),又由题意有(2)由(1)知,此时,由或,所以函数的单调减区间为和要恒成立,即①当时,,则要恒成立,令,再令,所以在内递减,所以当时,,故,所以在内递增,;②当时,lnx>0,则要恒成立,由①可知,当时,,所以内递增,所以当时,,故,所以在内递增,综合①②可得,即存在常数满足题意21、(1)an=2n-12;(2).【解析】(1)根据等差数列的性质得到,然后根据等差数列的通项公式求出和的值即可.(2)根据(1)的条件求出b2=-24,b1=-8,然后根据等比数列的通项公式求出的值即可.【小问1详解】设等差数列{an}的公差为d,因为a1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【小问2详解】设等比数列{bn}的公比为q,因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,即q=3,因此.22、(1)(2)(3)【解析】(1)根据列举法列出所有的可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论