版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市华实高中2026届高一上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽,而将信噪比从1000提升至4000,则大约增加了()附:A.10% B.20%C.50% D.100%2.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20133.土地沙漠化的治理,对中国乃至世界来说都是一个难题,我国创造了治沙成功案例——毛乌素沙漠.某沙漠经过一段时间的治理,已有1000公顷植被,假设每年植被面积以20%的增长率呈指数增长,按这种规律发展下去,则植被面积达到4000公顷至少需要经过的年数为()(参考数据:取)A.6 B.7C.8 D.94.设集合,则()A. B.C. D.5.直线l通过两直线7x+5y-24=0和x-y=0的交点,且点(5,1)到直线l的距离为,则直线l的方程是()A.3x+y+4=0 B.3x-y+4=0C.3x-y-4=0 D.x-3y-4=06.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.87.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知“”是“”的充分不必要条件,则k的取值范围为()A. B.C. D.9.已知,则的值为()A. B.C.1 D.210.已知,,,则,,三者的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______12.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________13.用表示a,b中的较小者,则的最大值是____.14.已知偶函数,x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______15.已知函数,则_________16.已知是幂函数,且在区间是减函数,则m=_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边过点,且.(1)求的值;(2)求的值.18.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值19.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完(1)写出利润(万元)关于年产量x(千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?20.已知函数.(1)求最小正周期;(2)当时,求的值域.21.已知平面直角坐标系中,,,Ⅰ若三点共线,求实数的值;Ⅱ若,求实数的值;Ⅲ若是锐角,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,计算出值即可;【详解】当时,,当时,,因为所以将信噪比从1000提升至4000,则大约增加了20%,故选:B.【点睛】本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.2、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为3、C【解析】根据题意列出不等式,利用对数换底公式,计算出结果.【详解】经过年后,植被面积为公顷,由,得.因为,所以,又因为,故植被面积达到4000公顷至少需要经过的年数为8.故选:C4、C【解析】利用集合并集的定义,即可求出.【详解】集合,.故选:.【点睛】本题主要考查的是集合的并集的运算,是基础题.5、C【解析】交点坐标为,设直线方程为,即,则,解得,所以直线方程为,即,故选C点睛:首先利用点斜式设出直线,由距离公式求出斜率,解得直线方程.求直线的题型,基本方法是利用点斜式求直线方程,本题通过距离公式求斜率,写出直线方程6、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题7、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B8、C【解析】根据“”是“”的充分不必要条件,可知是解集的真子集,然后根据真子集关系求解出的取值范围.【详解】因为,所以或,所以解集为,又因为“”是“”的充分不必要条件,所以是的真子集,所以,故选:C.【点睛】结论点睛:一般可根据如下规则判断充分、必要条件:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分也不必要条件,则对应集合与对应集合互不包含.9、A【解析】先使用诱导公式,将要求的式子进行化简,然后再将带入即可完成求解.【详解】由已知使用诱导公式化简得:,将代入即.故选:A.10、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.12、(1).(2).或【解析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题13、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.14、【解析】由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式【详解】因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+)故答案为f(x)=ln(x-2+)【点睛】本题主要考查函数的奇偶性,考查利用函数的周期性求解析式,意在考查学生对这些知识的理解掌握水平和分析推理能力.15、【解析】运用代入法进行求解即可.【详解】,故答案为:16、【解析】根据幂函数系数为1,得或,代入检验函数单调性即可得解.【详解】由是幂函数,可得,解得或,当时,在区间是减函数,满足题意;当时,在区间是增函数,不满足题意;故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)任意角的三角函数的定义求得x的值,可得sinα和tanα的值,再利用同角三角函数的基本关系,求得要求式子的值;(2)利用两角和差的三角公式、二倍角公式,化简所给的式子,可得结果【详解】由条件知,解得,故.故,(1)原式==(2)原式.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题18、(1);(2)【解析】(1)先求出角,利用诱导公式即可求出;(2)利用根与系数关系求出,得到,利用切化弦和二倍角公式即可求解.【详解】(1)因为,所以由,得,即所以(2)由题意得因为且,所以解得,所以则,即19、(1);(2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【解析】(1)分、两种情况讨论,结合利润销售收入成本,可得出年利润(万元)关于年产量(千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数的最大值及其对应的值,由此可得出结论.【小问1详解】由题意可知,当时,,当时,,故有;【小问2详解】当时,,即时,,当时,有,当且仅当时,,因为,所以时,,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.20、(1)(2)【解析】(1)根据辅角公式可得,由此即可求出的最小正周期;(2)根据,可得,在结合正弦函数的性质,即可求出结果.【小问1详解】解:所以最小正周期为;【小问2详解】,,的值域为.21、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解析】Ⅰ根据三点共线,即可得出,并求出,从而得出,求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南新高考真题试卷及答案
- 第七单元 第30课时 视图与投影
- 初三单元历史试卷及答案
- 课程培训学员合同范本
- 2025年生态环保部考试题及答案
- 正规的建筑合同范本
- 第九类综合考试题及答案
- 辽宁高校招聘试题及答案
- 配件销售年度合同范本
- 唤醒护理与家属沟通
- 2026年电商活动策划实战培训课件
- 2026年全国烟花爆竹经营单位主要负责人考试题库(含答案)
- 防范非计划性拔管
- 2025年考研政治《马克思主义基本原理》模拟卷
- (新教材)部编人教版三年级上册语文 第25课 手术台就是阵地 教学课件
- 2026天津农商银行校园招聘考试历年真题汇编附答案解析
- 2025重庆市环卫集团有限公司招聘27人笔试历年参考题库附带答案详解
- 钻井安全操作规程
- 精密减速机行业发展现状及趋势预测报告2026-2032
- 中小学《信息技术》考试试题及答案
- 2025及未来5年挂钟机芯项目投资价值分析报告
评论
0/150
提交评论