版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市第五中学2026届数学高二上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.92.函数,则的值为()A B.C. D.3.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.4.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.5.已知命题P:,,则命题P的否定为()A., B.,C., D.,6.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.27.已知直线和直线互相垂直,则等于()A.2 B.C.0 D.8.变量,满足约束条件则的最小值为()A. B.C. D.59.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.310.已知等差数列的前项和为,若,则()A B.C. D.11.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.12.若抛物线的焦点与椭圆的右焦点重合,则的值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数学中,多数方程不存在求根公式.因此求精确根非常困难,甚至不可能.从而寻找方程的近似根就显得特别重要.例如牛顿迭代法就是求方程近似根的重要方法之一,其原理如下:假设是方程的根,选取作为的初始近似值,在点处作曲线的切线,则与轴交点的横坐标称为的一次近似值,在点处作曲线的切线.则与轴交点的横坐标称为的二次近似值.重复上述过程,用逐步逼近.若给定方程,取,则__________.14.已知满足约束条件,则的最小值为___________15.关于曲线,则以下结论正确的个数有______个①曲线C关于原点对称;②曲线C中,;③曲线C是不封闭图形,且它与圆无公共点;④曲线C与曲线有4个交点,这4点构成正方形16.已知命题p:若,则,那么命题p的否命题为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面,,,是边长为的等边三角形,是以为斜边的等腰直角三角形,点为线段的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.18.(12分)“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图1所示:(1)利用图1,求网民消费金额的平均值和中位数;(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关.男女合计30合计45附表:P(χ2≥k0)0.100.050.012.7063.8416.635参考公式:χ2=.19.(12分)已知数列满足,且.(1)求数列的通项公式;(2)若,为数列的前n项和,求.20.(12分)已知函数的图象在处的切线方程为.(1)求的解析式;(2)若关于的方程在上有解,求的取值范围.21.(12分)已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.22.(10分)已知焦点为F的抛物线上一点到F的距离是4(1)求抛物线C的方程(2)若不过原点O的直线l与抛物线C交于A,B两点(A,B位于x轴两侧),C的准线与x轴交于点E,直线与分别交于点M,N,若,证明:直线l过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C2、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B3、D【解析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.4、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A5、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B6、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.7、D【解析】利用直线垂直系数之间的关系即可得出.【详解】解:直线和直线互相垂直,则,解得:.故选:D.8、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.9、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D10、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.11、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题12、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据牛顿迭代法的知识求得.【详解】构造函数,,切线的方程为,与轴交点的横坐标为.,所以切线的方程为,与轴交点的横坐标为.故答案为:14、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:15、2【解析】根据曲线的方程,以及曲线的对称性、范围,结合每个选项进行逐一分析,即可判断.【详解】①将方程中的分别换为,方程不变,故该曲线关于原点对称,故正确;②因为,解得或,故,同理可得:,故错误;③根据②可知,该曲线不是封闭图形;联立与,可得:,将其视作关于的一元二次方程,故,所以方程无根,故曲线与没有交点;综上所述,③正确;④假设曲线C与曲线有4个交点且交点构成正方形,根据对称性,第一象限的交点必在上,联立与可得:,故交点为,而此点坐标不满足,所以这样的正方形不存在,故错误;综上所述,正确的是①③.故答案为:.【点睛】本题考察曲线与方程中利用曲线方程研究曲线性质,处理问题的关键是把握由曲线方程如何研究对称性以及范围问题,属困难题.16、若,则【解析】直接利用否命题的定义,对原命题的条件与结论都否定即可得结果【详解】因为命题:若,则,所以否定条件与结论后,可得命题的否命题为若,则,故答案为若,则,【点睛】本题主要考查命题的否命题,意在考查对基础知识的掌握与应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)取的中点,连接,,证明两两垂直,如图建系,求出的坐标以及平面的一个法向量,证明结合面,即可求证;(2)求出的坐标以及平面的法向量,根据空间向量夹角公式计算即可求解.【小问1详解】如图:取的中点,连接,,因为是边长为等边三角形,是以为斜边的等腰直角三角形,可得,,因为面面,面面,,面,所以平面,因为面,所以,可得两两垂直,分别以所在的直线为轴建立空间直角坐标系,则,,,,,,所以,,,设平面的一个法向量,由,可得,令,则,所以,因为,所以,因为面,所以平面.【小问2详解】,,,设平面的一个法向量,由,令,,,所以,设直线与平面所成角为,则.所以直线与平面所成角的正弦值为.18、(1),(2)列联表见解析,没有【解析】(1)根据平均数的定义求平均数,由于前2组的频率和恰好为,从而可求出中位数,(2)根据频率分布表结合已知的数据计算完成列联表,然后计算χ2公式计算χ2,再根据临界值表比较可得结论【小问1详解】以每组的中间值代表本组的消费金额,则网民消费金额的平均值为0.频率直方图中第一组、第二组的频率之和为,中位数;【小问2详解】把下表中空格里的数填上,得列联表如下;男女合计252550203050合计4555100计算,所以没有的把握认为网购消费与性别有关.19、(1)(2)【解析】(1)由题意可得数列是以2为公差的等差数列,再由可求出,从而可求出通项公式,(2)由(1)可得,然后利用分组求和可求出【小问1详解】因为数列满足,所以数列是以2为公差的等差数列,因为,所以,得,所以【小问2详解】由(1)可得,所以20、(1)(2)【解析】(1)求,由条件可得,得出关于的方程组,求解可得;(2)令,注意,所以在具有单调性时,则方程无解,求,对分类讨论,求出单调区间,结合函数值的变化趋势,即可求得结论.【详解】解:(1),因为,所以,解得,,所以.(2)令,则.令,则在上单调递增.当,即时,,所以单调递增,又,所以;当,即时,则存在,使得,所以函数在上单调递减,在上单调递增,又,则.当时,,所以在上有解.综上,的取值范围为.【点睛】本题考查导数的几何意义求参数,考查导数的综合应用,涉及到单调区间、函数零点的问题,考查分类讨论思想,属于较难题.21、(1)证明见解析(2)【解析】(1)直线方程变形后令的系数等于0消去参数即可求得定点坐标.(2)先求出圆心C到直线l距离,然后用勾股定理即可求得弦长.【小问1详解】,联立得:即直线l过定点(.【小问2详解】由题意直线l的斜率,即,∴,圆,圆心,半径,圆心C到直线l的距离,所以直线l被圆C所截得的弦长为.22、(1);(2)证明过程见解析.【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临终护理中的舒适护理
- 护理岗位晋升策略与经验分享
- 脑炎护理中的心理支持与沟通
- 体检人群甲状腺结节风险评估与健康管理专家共识
- 大丰市小海中学高二生物三同步课程讲义第讲生态系统的结构
- 2025年办公椅租赁合同(人体工学)
- 基础设施物联网应用
- 填料摩擦学行为研究
- 智能风控模型优化-第33篇
- 塑料制品环境影响评价标准
- TLR2对角膜移植术后MDSC分化及DC成熟的调控机制研究
- 建筑设计防火规范-实施指南
- CJ/T 511-2017铸铁检查井盖
- 智能采血管理系统功能需求
- 【基于PLC的自动卷缆机结构控制的系统设计10000字(论文)】
- 资产移交使用协议书
- GB/T 45481-2025硅橡胶混炼胶医疗导管用
- GB/T 32468-2025铜铝复合板带箔
- 山西交控集团招聘笔试内容
- 大窑校本教材合唱的魅力
- 《建筑测绘》课件
评论
0/150
提交评论