版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届天津市南开区数学高一上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a,b,c的大小关系为()A B.C. D.2.已知函数,若正实数、、、互不相等,且,则的取值范围为()A. B.C. D.3.随着智能手机的普及,手机摄影越来越得到人们的喜爱,要得到美观的照片,构图是很重要的,用“黄金分割构图法”可以让照片感觉更自然、更舒适,“黄金九宫格”是黄金分割构图的一种形式,是指把画面横、竖各分三部分,以比例为分隔,4个交叉点即为黄金分割点.如图,分别用表示黄金分割点.若照片长、宽比例为,设,则()A. B.C. D.4.已知角为第四象限角,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知函数的图象经过点,则的值为()A. B.C. D.6.已知的部分图象如图所示,则的表达式为A.B.C.D.7.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.98.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}9.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q10.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切二、填空题:本大题共6小题,每小题5分,共30分。11.若,则___________.12.某同学在研究函数
f(x)=(x∈R)
时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)13.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201214.若直线与互相垂直,则点到轴的距离为__________15.函数的定义域为__________.16.已知函数,若,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一圆与直线相切于点,且经过点,求此圆的方程18.已知函数.(1)当时,求函数的值域;(2)若函数的值域为R,求实数取值范围.19.已知定义在上的奇函数(1)求的值;(2)用单调性的定义证明在上是增函数;(3)若,求的取值范围.20.已知集合,集合,集合.(1)求;(2)若,求实数的值取范围.21.如图,是平面四边形的对角线,,,且.现在沿所在的直线把折起来,使平面平面,如图.(1)求证:平面;(2)求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】比较a,b,c的值与中间值0和1的大小即可﹒【详解】,,所以,故选:A.2、A【解析】利用分段函数的定义作出函数的图象,不妨设,根据图象可得出,,,的范围同时,还满足,即可得答案【详解】解析:如图所示:正实数、、、互不相等,不妨设∵则,∴,∴且,,∴故选:A3、B【解析】依题意可得,即可得到,再利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:依题意,所以,所以故选:B4、C【解析】根据三角函数的定义判断、的符号,即可判断.【详解】因为是第四象限角,所以,,则点位于第三象限,故选:C5、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.6、B【解析】由图可知,,所以,所以,又当,即,所以,即,当时,,故选.考点:三角函数的图象与性质.7、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.8、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题9、A【解析】根据自然数集以及有理数集的含义判断数与集合关系.【详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【点睛】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.10、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题12、①②③【解析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【详解】对于①,任取,都有,∴①正确;对于②,当时,,根据函数的奇偶性知时,,且时,,②正确;对于③,则当时,,由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且时,一定有,③正确;对于④,因为只有一个根,∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.13、【解析】根据表格从里层往外求即可.【详解】解:由表可知,.故答案为:.14、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.15、【解析】解不等式即可得出函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.16、-2020【解析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【点睛】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等18、(1);(2).【解析】(1)当时,,利用二次函数的性质求出真数部分的范围,根据对数函数的单调性可求出值域;(2)的值域为等价于的值域包含,故,即求.小问1详解】当时,,∵,∴,∴函数的值域;【小问2详解】要使函数的值域为R,则的值域包含,∴,解得或,∴实数取值范围为.19、(1)(2)证明见解析(3)【解析】(1)由是定义在上的奇函数知,由此即可求出结果;(2)根据函数单调递增的定义证明即可;(3)根据函数的奇偶性和单调性,可得,解不等式,即可得到结果.【小问1详解】解:由是定义在上的奇函数知,,经检验知当时,是奇函数,符合题意.故.【小问2详解】解:设,且,则,故在上是增函数.【小问3详解】解:由(2)知奇函数在上是增函数,故或,所以满足的实数的取值范围是.20、(1)或;(2).【解析】(1)根据一元二次不等式的解法求出集合、,即可求出;(2)由,可知,得到不等式组,即得.【小问1详解】∵,,,或,∴或;【小问2详解】∵,,由,得,,解得,∴实数的值取范围为.21、(1)见解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又,所以平面,因此就是点到平面的距离,在中,,,所以.试题解析:(1)证明:因为平面平面平面平面,平面,且,所以平面(2)取的中点,连.因为,所以,又平面,所以,又,所以平面,所以就是点到平面的距离,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (新教材)2026年青岛版八年级上册数学 3.4 分式方程 课件
- 2025年贝类饲料供应合同协议
- 城市绿地生态功能评估模型
- 房地产 -2025年第四季度奥克兰公寓数据 Q4 2025 Auckland Apartment Figures
- 国际贸易规则调整
- 试验设计题库及答案解析
- 2026 年中职经管类(经济基础)试题及答案
- 基于AIGC的短视频交易平台
- 办公场所租赁用途变更合同协议2025
- 2024年中考道德与法治(徐州)第二次模拟考试(含答案)
- 2025年10月自考04184线性代数经管类试题及答案含评分参考
- 国开2025年秋《心理学》形成性考核练习1-6答案
- 科技研发项目管理办法
- 2023高效制冷机房系统应用技术规程
- 第十一章灵巧弹药
- 电力工程公司积成绩效考核管理体系制度规定
- 银行IT服务管理事件管理流程概要设计
- 地图文化第三讲古代测绘课件
- LY/T 2230-2013人造板防霉性能评价
- GB/T 34891-2017滚动轴承高碳铬轴承钢零件热处理技术条件
- 突发公共卫生事件处置记录表
评论
0/150
提交评论