江苏省淮安、宿迁等2026届高二上数学期末学业质量监测模拟试题含解析_第1页
江苏省淮安、宿迁等2026届高二上数学期末学业质量监测模拟试题含解析_第2页
江苏省淮安、宿迁等2026届高二上数学期末学业质量监测模拟试题含解析_第3页
江苏省淮安、宿迁等2026届高二上数学期末学业质量监测模拟试题含解析_第4页
江苏省淮安、宿迁等2026届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安、宿迁等2026届高二上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前n项和为,,,则()A. B.C. D.2.已知,若,是第二象限角,则=()A. B.5C. D.103.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.4.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−35.在单调递减的等比数列中,若,,则()A.9 B.3C. D.6.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.27.在下列函数中,求导错误的是()A., B.,C., D.,8.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.9.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.2811.若,都为正实数,,则的最大值是()A. B.C. D.12.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.某校老年、中年和青年教师的人数见如表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有人,则该样本的老年教师人数为______.类别老年教师中年教师青年教师合计人数90018001600430014.直线与直线平行,则m的值是__________15.已知数列满足0,,则数列的通项公式为____,则数列的前项和______16.设命题:,,则为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左,右焦点为,椭圆的离心率为,点在椭圆C上(1)求椭圆C的方程;(2)点T为椭圆C上的点,若点T在第一象限,且与x轴垂直,过T作两条斜率互为相反数的直线分别与椭圆C交于点M,N,探究直线的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由18.(12分)已知数列满足,,数列前项和为.(1)求数列,的通项公式;(2)表示不超过的最大整数,如,设的前项和为,令,求证:.19.(12分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和20.(12分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解当地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求的值;(2)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.21.(12分)设函数,其中,为自然对数的底数.(1)讨论单调性;(2)证明:当时,.22.(10分)已知直线与圆.(1)当直线l恰好平分圆C的周长时,求m的值;(2)当直线l被圆C截得的弦长为时,求m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.2、D【解析】先由诱导公式及同角函数关系得到,再根据诱导公式化简,最后由二倍角公式化简求值即可.【详解】∵,∴,∵是第二象限角,∴,∴故选:D3、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.4、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B5、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.6、C【解析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.7、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.8、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.9、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.10、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C11、B【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D12、C【解析】先根据直线平行的充要条件求出a,然后可得.【详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,总体中青年教师与老年教师比例为;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即,解得.故答案为.考点:分层抽样.14、【解析】利用直线的平行条件即得.详解】∵直线与直线平行,∴,∴.故答案为:.15、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.16、,【解析】由全称命题的否定即可得到答案【详解】根据全称命题的否定,可得为,【点睛】本题考查了含有量词的命题否定,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)直线的斜率为定值,且定值为.【解析】(1)根据椭圆的离心率及所过的点求出椭圆参数a、b,即可得椭圆标准方程.(2)由题设得,法一:设为,联立椭圆方程应用韦达定理求M坐标,根据与斜率关系求N的坐标,应用两点式求斜率;法二:设为,,联立椭圆方程,应用韦达定理及得到关于参数m、k的方程,即可判断是否为定值.【小问1详解】由题意,则,又,所以椭圆C方程为,代入有,解得,所以,故椭圆的标准方程为;【小问2详解】由题设易知:,法一:设直线为,由,消去y,整理得,因为方程有一个根为,所以M的横坐标为,纵坐标,故M为,用代替k,得N为,所以,故直线的斜率为定值法二:由已知直线的斜率存在,可设直线为,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,则直线过点T,不合题意,所以.即,故直线的斜率为定值.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及得到关于直线斜率的方M、N程,或求出的坐标,应用两点式求斜率.18、(1),(2)证明见解析【解析】(1)利用累加法求通项公式,利用通项公式与前n项和公式的关系可求的通项公式;(2)求出并判断其范围,求出,利用裂项相消法求的前n项和即可证明.【小问1详解】由题可知,当n≥2时,=当n=1时,也符合上式,∴;当时,,当n=1时,也符合上式,∴;【小问2详解】由(1)知,∴,∵,;∵,,,,,∴设为数列的前n项和,则.19、(1)(2)【解析】(1)设的公差为,由等差数列的通项公式结合条件可得答案.(2)由(1)可得,由错位相减法可得答案.【小问1详解】设的公差为,由已知得且,解得,,所以的通项公式为【小问2详解】由(1)可得,所以,所以,两式相减得:,所以,所以20、(1)(2)【解析】(1)由频率之和为1求参数.(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法写出所有基本事件,根据古典概型的概率计算即可.小问1详解】根据频率分布直方图得:,解得;【小问2详解】由于,和的频率之比为:,故抽取的5人中,,和别为:1人,2人,2人,记的1人为,的2人为,,的2人为,,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含,,,,,,共7种,故概率.21、(1)答案见解析(2)答案见解析【解析】(1)求导数,分和,两种情况讨论,即可求得的单调性;(2)令,利用导数求得单调递增,结合,得到,进而证得.【详解】(1)由函数,可得,当时,,在内单调递减;当时,由有,当时,,单调递减;当时,,单调递增.(2)证明:令,则,当时,,单调递增,因为,所以,即,当时,可得,即【点睛】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论