河北省唐山市滦南县第二中学2026届高二上数学期末统考试题含解析_第1页
河北省唐山市滦南县第二中学2026届高二上数学期末统考试题含解析_第2页
河北省唐山市滦南县第二中学2026届高二上数学期末统考试题含解析_第3页
河北省唐山市滦南县第二中学2026届高二上数学期末统考试题含解析_第4页
河北省唐山市滦南县第二中学2026届高二上数学期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市滦南县第二中学2026届高二上数学期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.32.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A为“为偶数”,事件B为“”,则的值为()A. B.C. D.3.直线的倾斜角为()A. B.C. D.4.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.405.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是156.已知集合,则()A. B.C. D.7.若、且,则下列式子一定成立的是()A. B.C. D.8.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.9.如图,点A的坐标为,点C的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于()A. B.C. D.10.某学校高二级选择“史政地”“史政生”和“史地生”组合的同学人数分别为240,120和60.现采用分层抽样的方法选出14位同学进行一项调查研究,则“史政生”组合中选出的人数为()A.8 B.6C.4 D.311.已知随机变量服从正态分布,若,则()A.0.2 B.0.24C.0.28 D.0.3212.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某单位现有三个部门竞岗,甲、乙、丙三人每人只竞选一个部门,设事件A为“三人竞岗部门都不同”,B为“甲独自竞岗一个部门”,则______.14.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________15.已知圆,圆与轴相切,与圆外切,且圆心在直线上,则圆的标准方程为________16.若直线与平行,则实数________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)18.(12分)已知圆C:,圆C与x轴交于A,B两点(1)求直线y=x被圆C所截得的弦长;(2)圆M过点A,B,且圆心在直线y=x+1上,求圆M的方程19.(12分)已知函数的两个极值点之差的绝对值为.(1)求的值;(2)若过原点的直线与曲线在点处相切,求点的坐标.20.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.21.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg22.(10分)已知函数,从下列两个条件中选择一个使得数列{an}成等比数列.条件1:数列{f(an)}是首项为4,公比为2的等比数列;条件2:数列{f(an)}是首项为4,公差为2的等差数列.(1)求数列{an}的通项公式;(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C2、B【解析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,其中基本事件数为,,,,,,,,,,,,,,,,,,一共个基本事件,∴,而A、同时发生,基本事件有当一共有9个基本事件,∴,则在事件A发生的情况下,发生的概率为,故选:3、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.4、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题5、D【解析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D6、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.7、B【解析】构造函数,利用函数在上的单调性可判断AB选项;构造函数,利用函数在上的单调性可判断CD选项.【详解】对于AB选项,构造函数,其中,则,所以,函数在上单调递增,因为、且,则,即,A错B对;对于CD选项,构造函数,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在上不单调,无法确定与的大小关系,故CD都错.故选:B.8、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.9、A【解析】分别由矩形面积公式与微积分几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为,由几何概型公式可得此点取自阴影部分的概率等于,故选:A10、C【解析】根据题意求得抽样比,再求“史政生”组合中抽取的人数即可.【详解】根据题意,分层抽样的抽样比为,故从“史政生”组合120中,抽取的人数时人.故选:.11、C【解析】依据正态曲线的对称性即可求得【详解】由随机变量服从正态分布,可知正态曲线的对称轴为直线由,可得则,故故选:C12、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##0.5【解析】根据给定条件求出事件B和AB的概率,再利用条件概率公式计算作答.【详解】依题意,,,所以.故答案:14、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.15、【解析】根据题干求得圆的圆心及半径,再利用圆与轴相切,与圆外切,且圆心在直线上确定圆的圆心及半径.【详解】圆的标准方程为,所以圆心,半径为由圆心在直线上,可设因为与轴相切,与圆外切,于是圆的半径为,从而,解得因此,圆的标准方程为故答案为:【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.两圆相切注意讨论内切外切两种情况.16、【解析】根据两直线平行可得出关于实数的等式与不等式,即可解得实数的值.【详解】因为,则,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.18、(1);(2).【解析】(1)根据已知条件,结合垂径定理,以及点到直线的距离公式,即可求解(2)根据已知圆的方程,令y=0,结合韦达定理,求出圆心的横坐标,即可求出圆心,再结合勾股定理,即可求出半径【小问1详解】∵圆C:,∴,即圆心为(-1,1),半径r=3,∵直线y=x,即x-y=0,∴圆心(-1,1)到直线x-y=0的距离d=,∴直线y=x被圆C所截得的弦长为=【小问2详解】设A(x1,y1),B(x2,y2),∵圆C:,圆C与x轴交于A,B两点,∴x2-2x-7=0,则,|x1-x2|==,∴圆心的横坐标为x=,∵圆心在直线y=x+1上,∴圆心为(1,2),∴半径r=,故圆M的方程为19、(1);(2).【解析】(1)求,设的两根分别为,,由韦达定理可得:,,由题意知,进而可得的值;再检验所求的的值是否符合题意即可;(2)设,则,由列关于的方程,即可求得的值,进而可得的值,即可得点的坐标.【详解】由可得:设的两根分别为,,则,,由题意可知:,即,所以解得:,当时,,由可得或,由可得,所以在单调递增,在单调递减,在单调递增,所以为极大值点,为极小值点,满足两个极值点之差的绝对值为,符合题意,所以.(2)由(1)知,,设,则,由题意可得:,即,整理可得:,解得:或,因为即为坐标原点,不符合题意,所以,则,所以.20、(1);(2)不存在,理由见解析.【解析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出,即可得出结论.【小问1详解】解:设点、,当时,联立,可得,,由韦达定理可得,,所以,.【小问2详解】解:假设存在实数,使以为直径的圆经过坐标原点,设、,联立得,由题意可得,解得且,由韦达定理可知,因为以为直径的圆经过坐标原点,则,所以,,整理可得,该方程无实解,故不存在.21、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论