版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥庐阳高级中学2026届数学高二上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上为单调增函数,则m的取值范围()A. B.C. D.2.在正方体中,P,Q两点分别从点B和点出发,以相同的速度在棱BA和上运动至点A和点,在运动过程中,直线PQ与平面ABCD所成角的变化范围为A. B.C. D.3.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或114.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.5.已知正方体中,分别为棱的中点,则直线与所成角的余弦值为()A. B.C. D.6.如图,O是坐标原点,P是双曲线右支上的一点,F是E的右焦点,延长PO,PF分别交E于Q,R两点,已知QF⊥FR,且,则E的离心率为()A. B.C. D.7.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A B.C. D.8.已知是椭圆上的一点,则点到两焦点的距离之和是()A.6 B.9C.14 D.109.函数在上的最小值为()A. B.4C. D.10.设椭圆C:的右焦点为F,过原点O的动直线l与椭圆C交于A,B两点,那么的周长的取值范围为()A. B.C. D.11.已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4 B.6C. D.12.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线:与直线:平行,则的值为___________.14.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.15.设函数,则___________.16.已知数列则是这个数列的第________项.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有1000人参加了某次垃圾分类知识竞赛,从中随机抽取100人,将这100人的此次竞赛的分数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下频率分布直方图.(1)求图中a的值;(2)估计总体1000人中竞赛分数不少于70分的人数;(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数.18.(12分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.19.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程20.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.21.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围22.(10分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.2、C【解析】先过点作于点,连接,根据题意,得到即为直线与平面所成的角,设正方体棱长为,设,推出,进而可求出结果.【详解】过点作于点,连接,因为四棱柱为正方体,所以易得平面,因此即为直线与平面所成的角,设正方体棱长为,设,则,,因为两点分别从点和点出发,以相同的速度在棱和上运动至点和点,所以,因此,所以,因为,所以,则,因此.故选:C.【点睛】本题主要考查求线面角的取值范围,熟记线面角的定义即可,属于常考题型.3、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系4、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.5、D【解析】以D为原点建立空间直角坐标系,求出E,F,B,D1点的坐标,利用直线夹角的向量求法求解【详解】如图,以D为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选D【点睛】本题主要考查了空间向量的应用及向量夹角的坐标运算,属于基础题6、B【解析】令双曲线E的左焦点为,连线即得,设,借助双曲线定义及直角用a表示出|PF|,,再借助即可得解.【详解】如图,令双曲线E的左焦点为,连接,由对称性可知,点线段中点,则四边形是平行四边形,而QF⊥FR,于是有是矩形,设,则,,,在中,,解得或m=0(舍去),从而有,中,,整理得,,所以双曲线E的离心率为故选:B7、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C8、A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A9、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D10、A【解析】根据椭圆的对称性椭圆的定义可得,结合的范围求的周长的取值范围.【详解】的周长,又因为A,B两点为过原点O的动直线l与椭圆C的交点,所以A,B两点关于原点对称,椭圆C的左焦点为,则,所以,又因为三点不共线,所以,所以的周长的取值范围为,故选:A.11、D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D12、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.14、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.15、【解析】由的导数为,将代入,即可求出结果.【详解】因为,所以,所以.故答案为:.16、12【解析】根据被开方数的特点求出数列的通项公式,最后利用通项公式进行求解即可.【详解】数列中每一项被开方数分别为:6,10,14,18,22,…,因此这些被开方数是以6为首项,4为公差的等差数列,设该等差数列为,其通项公式为:,设数列为,所以,于是有,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.040;(2)750;(3)76.5.【解析】(1)由频率分布直方图的性质列出方程,能求出图中的值;(2)先求出竞赛分数不少于70分的频率,由此能估计总体1000人中竞赛分数不少于70分的人数;(3)由频率分布直方图的性质能估计总体1000人的竞赛分数的平均数【详解】(1)由频率分布直方图得:,解得图中的值为0.040(2)竞赛分数不少于70分的频率为:,估计总体1000人中竞赛分数不少于70分的人数为(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数为:【点睛】本题主要考查频率、频数、平均数的求法,考查频率分布直方图的性质等基础知识,意在考查学生对这些知识的理解掌握水平18、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别求出向量和,证明即可;(2)先求出和平面的法向量,然后利用公式求出,则直线与平面所成角的正弦值即为.【小问1详解】证明:∵,,∴△≌△,∴,设,在△中,由余弦定理得,即,则,即,,连接交于点,分别以,为轴、轴,过作轴,建立如图空间直角坐标系,则,,,,,,的中点,则,,∵,∴.【小问2详解】由(1)可知,,,,设平面的法向量为,则,即,令,则,即,则,记直线与平面所成角为,.19、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或20、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1详解】解:设正项等比数列的公比为,当时,,即,则有,即,而,解得,又,则,所以,所以数列,的通项公式分别为:,.【小问2详解】解:由(1)知,,则,则,两式相减得:于是得,由得:,即,令,,显然,,,,,,由,解得,即数列在时是递增的,于是得当时,即,,则,所以不等式成立的n的最小值是5.21、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得的取值范围.【小问1详解】当时,,,所以在区间递减;在区间递增.所以的减区间为,增区间为.【小问2详解】,恒成立.构造函数,,,构造函数,,所以在上递增,,所以在上成立,所以,所以,即的取值范围是.22、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大连市公安局面向社会公开招聘警务辅助人员348人备考题库及答案详解1套
- 2025年威海市检察机关公开招聘聘用制书记员31人备考题库及一套答案详解
- 2025年锡林郭勒盟应急管理局关于公开招聘驻矿安全生产监管专家的备考题库及完整答案详解一套
- 学校召开《安全隐患大排查大整治百日攻坚专项行动》部署会议
- 2025年浙江大学中国农村发展研究院招聘备考题库有答案详解
- 国家知识产权局专利局专利审查协作四川中心2026年度专利审查员公开招聘备考题库及答案详解一套
- 2024年揭阳市揭西县公安局招聘警务辅助人员考试真题
- 2025年复旦大学脑智研究院招聘办公室行政助理岗位备考题库及1套参考答案详解
- 2026年河北沧州市第四医院招聘卫生专业技术人员考试重点题库及答案解析
- 2025年全球区块链技术五年应用前景报告
- 半导体厂耗能指标及节能方案之研究57张课件
- 吊车吊装专项施工方案
- 奶牛产后瘫痪的综合防治毕业设计论文
- 池州市排水有限公司天堂湖污水处理厂项目环境影响报告表
- 2021年度学校推荐评审专业技术职务任职资格量化赋分办法
- 启尔畅产品介绍专家讲座
- 2023版思想道德与法治专题3 追求远大理想 坚定崇高信念 第3讲 在实现中国梦的实践中放飞青春梦想
- 第八章空气管路与制动系统
- 工商银行个人养老金业务宣传材料
- 古诗词诵读《燕歌行(并序)》课件【知识精讲+备课精研】统编版高中语文选择性必修中册
- YC/T 144-2017烟用三乙酸甘油酯
评论
0/150
提交评论