河北省石家庄市新乐市七校联合体2025-2026学年高二上学期11月期中质量检测数学试题(解析版)_第1页
河北省石家庄市新乐市七校联合体2025-2026学年高二上学期11月期中质量检测数学试题(解析版)_第2页
河北省石家庄市新乐市七校联合体2025-2026学年高二上学期11月期中质量检测数学试题(解析版)_第3页
河北省石家庄市新乐市七校联合体2025-2026学年高二上学期11月期中质量检测数学试题(解析版)_第4页
河北省石家庄市新乐市七校联合体2025-2026学年高二上学期11月期中质量检测数学试题(解析版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级中学名校试卷PAGEPAGE1河北省石家庄市新乐市七校联合体2025-2026学高二上学期11月期中质量检测数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线在轴上的截距为()A.-3 B. C. D.3【答案】C【解析】令,得,即在轴上的截距为.故选:C.2.已知空间向量,,若,则()A. B. C.2 D.4【答案】A【解析】因为,所以存在实数,使得,即.即,,,所以,,所以.故选:A.3.已知椭圆的左、右焦点分别为,,为上顶点,则()A.的长轴长为5 B.的离心率等于C. D.的周长为14【答案】C【解析】如图,作出符合题意的图形,由题意知,,,对于A,结合题意可得的长轴长为10,故A错误,对于B,结合题意可得的离心率为,故B错误,对于C,由题意得,由两点间距离公式得,故C正确,对于D,结合椭圆的定义得的周长为,故D错误.故选:C.4.圆与圆的位置关系为()A.外离 B.外切 C.相交 D.内切【答案】A【解析】由题意知,,两圆的半径分别为,,所以,故两圆外离.故选:A.5.在四面体中,是的重心.记,,,若,则()A. B. C. D.【答案】B【解析】连接并延长交于,则为的中点,所以,,所以,所以,,所以.故选:B.6.已知双曲线的右焦点为,过的直线交于,两点,点在第二象限,且关于轴的对称点为,若,则的方程为()A. B.C. D.【答案】A【解析】由题意知(为坐标原点),,故直线的斜率为,所以的方程为,即.故选:A.7.已知实数,满足,则取值范围是()A. B. C. D.【答案】B【解析】设,则,可看作是一组与椭圆有公共点的平行直线.由,得.,解得故选:B.8.已知,分别为双曲线的左、右焦点,过原点的直线交于,两点,若,为锐角三角形,则的离心率的取值范围为()A. B. C. D.【答案】D【解析】由题意知,,关于原点对称,不妨设点为第一象限内一点,则,,又,,所以,,记,因为为锐角三角形,所以,,,即,,,解得,所以.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,若正方体的棱长为,为的中点,则()A.与所成的角为 B.C. D.与平面所成的角为【答案】AB【解析】以点为原点,以,,分别为轴,轴,轴建立如图所示的空间直角坐标系,则,,,,,,,所以,,,,所以,,所以与所成的角为,,.平面的一个法向量为,设与平面所成的角为,所以,所以A,B正确,C,D错误故选:AB.10.已知曲线,则下列命题错误的是()A.若,则为椭圆B.若或,则表示双曲线C.若为椭圆,则与椭圆有相同的焦距D.若为双曲线,则与双曲线有相同的焦距【答案】ACD【解析】因为,但,即不是椭圆,故A错误;当,即,或时,为双曲线,故B正确;当时,为焦点在轴上的椭圆,其焦距为,当时,为焦点在轴上的椭圆,其焦距为,而的焦距为,故C错误;当时,表示焦点在轴上的双曲线,其焦距为,当时,表示焦点在轴上的双曲线,其焦距为,与双曲线的焦距不相同,故D错误.故选:ACD.11.已知点,,动点满足,记点的轨迹为曲线.点,直线,则()A.曲线的方程为B.当最小时,C.当最大时,D.若曲线上仅有一点到直线的距离为2,则的值为【答案】ABC【解析】设,由,得,化简得,曲线,故A正确;由曲线的方程,知曲线表示以为圆心,且半径为的圆.当最小或最大时,如图所示,直线分别在的位置,均与曲线相切,,故B,C正确;圆心到直线的距离,由题意得,解得,或,故D错误.故选:ABC.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的实轴长为4,虚轴长为,则该双曲线的离心率等于__________.【答案】或【解析】记实轴长为,虚轴长为,焦距为.则,,所以,,.所以该双曲线的离心率.故答案为:.13.已知椭圆:的左、右焦点分别为,,为上一点,则的取值范围为__________.【答案】【解析】由题意知,,所以,设,则,由,得,故,所以当时,取得最大值9,当或时,取得最小值5,故的取值范围为.故答案为:.14.已知圆,过点作的两条切线,切点分别为,,则直线的方程为__________.【答案】【解析】因为切点分别为,,则,,所以,,,四点在以为直径的圆上,因为,所以在圆心为,半径为的圆上,其方程为,所以与两边分别作差,得,即直线的方程为.故答案为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.回答下面两个问题(1)求焦点为,,且过点的双曲线的标准方程;(2)求与双曲线有相同的渐近线,且过点的双曲线的标准方程.解:(1)由题意知,双曲线的焦点在轴上,且半焦距,故设所求双曲线的标准方程为,,,所以,所以,所以,故所求双曲线的标准方程为.(2)设所求双曲线的方程为,将点代入上述方程,得,所以,所以,故所求双曲线的方程为.16.已知点,,.(1)求的面积;(2)求的外接圆的方程.解:(1)直线的方程为,即,点到直线的距离,,所以的面积.(2)设外接圆的方程为,由题意得解得故的外接圆的方程为.17.已知三条直线,,.(1)若,,交于一点,求实数的值;(2)若,,可以围成一个三角形,求实数的取值范围.解:(1)联立与的方程,得解得即与的交点坐标为,由题意知点在上,所以,解得.(2)由(1)知,当时,,所以,当时,,所以,当不与和平行,且不过同一点时,,,三条直线可以围成三角形,所以,且,且,故的取值范围为.18.如图,在三棱柱中,,,,,平面平面,为的中点.(1)证明:;(2)求点到平面的距离;(3)求平面与平面的夹角的余弦值.(1)证明:因为,为中点,所以,因为平面平面,平面平面,平面,所以平面,又平面,所以;(2)解:因为,,所以为等边三角形,因为为的中点,所以,由(1)得,,故以为原点,直线、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则,,,,,所以,,,设平面的一个法向量,则即,解得,,所以,所以点到平面的距离.(3)解:由(2)得,,设平面的一个法向量,则即令,解得,,所以,由(2)知平面的一个法向量为,设平面与平面的夹角为,则.19.已知右焦点为的椭圆过点.(1)求的方程;(2)若点在上,点为圆上一点,求的最大值;(3)过点的直线与交于,,与双曲线的右支交于点,,是否存在常数,使得为定值?若存在,求出的值;若不存在,请说明理由.解:(1)由题意得解得所以的方程为.(2)设,由题意知,,,,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论