2026届山西省大学附属中学校高一数学第一学期期末综合测试试题含解析_第1页
2026届山西省大学附属中学校高一数学第一学期期末综合测试试题含解析_第2页
2026届山西省大学附属中学校高一数学第一学期期末综合测试试题含解析_第3页
2026届山西省大学附属中学校高一数学第一学期期末综合测试试题含解析_第4页
2026届山西省大学附属中学校高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省大学附属中学校高一数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若的外接圆的圆心为O,半径为4,,则在方向上的投影为()A.4 B.C. D.12.定义在上的奇函数满足,若,,则()A. B.0C.1 D.23.如图,在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,则下列结论错误的是()A.与平面ABC所成的角为 B.平面C.与所成角为 D.4.已知幂函数的图像过点,若,则实数的值为A. B.C. D.5.已知角的顶点在原点,始边与轴的正半轴重合,终边经过点,则()A. B.C. D.6.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值7.C,S分别表示一个扇形的周长和面积,下列能作为有序数对取值的是()A. B.C. D.8.在下列区间中,函数f(x)=ex+2x﹣5的零点所在的区间为()A.(﹣1,0) B.(0,1)C.(1,2) D.(2,3)9.已知点M在曲线上,点N在曲线:上,则|MN|的最小值为()A.1 B.2C.3 D.410.幂函数的图象过点,则函数的值域是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数(,且)的图象经过点,则___________.12.若幂函数的图象经过点,则的值等于_________.13.已知扇形的弧长为,半径为1,则扇形的面积为___________.14.已知,,与的夹角为60°,则________.15.已知,且是第三象限角,则_____;_____16.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(Ⅰ)求的最小正周期及单调递增区间;(Ⅱ)求在区间上的最大值和最小值18.化简或求值:(1);(2)19.函数f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的部分图象如图所示:(1)求函数解析式;(2)求函数的单调递增区间.20.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,,,,如下图所示.当车速为(米/秒),且时,通过大数据统计分析得到下表给出的数据(其中系数随地面湿滑程度等路面情况而变化,)阶段0.准备1.人的反应2.系统反应3.制动时间秒秒距离米米(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式;并求当,在汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间(精确到0.1秒);(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?21.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】过作的垂线,垂足为,分析条件可得,作出图分析结合投影的几何意义可进而可求得投影..【详解】过作的垂线,垂足为,则M为BC的中点,连接AM,由,可得,所以三点共线,即有,且.所以.在方向上的投影为,故选:C.2、C【解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.3、A【解析】在A中,∠C1AC是AC1与平面ABC所成的角,从而AC1与平面ABC所成的角为45°;在B中,连结OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1与BB1所成的角,从而AC1与BB1所成的角为45°;在D中,连结OD,则OD∥AC1【详解】由在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1与平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1与平面ABC所成的角为45°,故A错误;在B中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故B正确;在C中,∵CC1∥BB1,∴∠AC1C是AC1与BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1与BB1所成的角为45°,故C正确;在D中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故D正确故选A【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题4、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.5、D【解析】先利用三角函数的恒等变换确定点P的坐标,再根据三角函数的定义求得答案.【详解】,,即,则,故选:D.6、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B7、B【解析】设扇形半径为,弧长为,则,,根据选项代入数据一一检验即可【详解】设扇形半径为,弧长为,则,当,有,则无解,故A错;当,有得,故B正确;当,有,则无解,故C错;当,有,则无解,故D错;故选:B8、C【解析】由零点存在性定理即可得出选项.【详解】由函数为连续函数,且,,所以,所以零点所在的区间为,故选:C【点睛】本题主要考查零点存在性定理,在运用零点存在性定理时,函数为连续函数,属于基础题.9、B【解析】根据圆的一般方程得出圆的标准方程,并且得圆的圆心和半径,计算两圆圆心的距离后就可以求解.【详解】由题意知:圆:,的坐标是,半径是,圆:,的坐标是,半径是.所以,因此两圆相离,所以最小值为.故选:B10、C【解析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【详解】设,代入点得,则,令,函数的值域是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.12、【解析】设出幂函数,将点代入解析式,求出解析式即可求解.【详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【点睛】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.13、##【解析】利用扇形面积公式进行计算.【详解】即,,由扇形面积公式得:.故答案为:14、10【解析】由数量积的定义直接计算.【详解】.故答案为:10.15、①.##②.##0.96【解析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【详解】因,且是第三象限角,则,所以,.故答案为:;16、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)最小正周期是,单调递增区间是.(Ⅱ)最大值为,最小值为【解析】详解】试题分析:(Ⅰ)将函数解析式化为,可得最小正周期为;将代入正弦函数的增区间可得函数的单调递增区间是.(Ⅱ)由可得,故,从而可得函数在区间上的最大值为,最小值为试题解析:(Ⅰ),所以函数的最小正周期是,由,得,所以的单调递增区间是.(Ⅱ)当时,,所以,所以,所以在区间上的最大值为,最小值为点睛:解决三角函数综合题(1)将f(x)化为的形式;(2)构造;(3)逆用和(差)角公式得到(其中φ为辅助角);(4)利用,将看做一个整体,并结合函数的有关知识研究三角函数的性质18、(1)99;(2)2.【解析】(1)根据指数幂的运算公式将式子进行化简求值即可;(2)对式子提公因式,结合同底的对数运算得到最终结果解析:(1)原式(2)原式19、(1);(2).【解析】(1)根据最高点和最低点可求,结合周期可求,结合点的坐标可求,然后可得解析式;(2)根据解析式,利用整体代换的方法可求单调区间.【详解】(1)由图可得,所以;因为时,,所以,;所以.(2)令,,解得,即增区间为.【点睛】本题主要考查三角函数解析式的求解和单调区间的求解,单调区间一般利用整体代换的意识,侧重考查数学抽象的核心素养.20、(1);2.4秒;(2)72(千米/小时)【解析】(1)由图,分别计算出报警时间、人的反应时间、系统反应时间、制动时间,相应的距离,,,,代入中即可,,利用基本不等式求最值;(2)将问题转化为对于任意,恒成立,利用分离参数求范围即可.【详解】(1)由题意得,所以当时,,(秒)即此种情况下汽车撞上固定障碍物的最短时间约

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论