版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市平邑县、沂水县2026届数学高二上期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,集合,,则()A. B.C. D.2.直线被椭圆截得的弦长是A. B.C. D.3.已知直线过点且与直线平行,则直线方程为()A. B.C. D.4.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A B.C. D.5.设是公比为的等比数列,则“”是“为递增数列”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知函数,在上随机任取一个数,则的概率为()A. B.C. D.7.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.8.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米9.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.10.直线的倾斜角是A. B.C. D.11.已知在等比数列中,,,则()A.9或 B.9C.27或 D.2712.已知椭圆的左、右顶点分别为,上、下顶点分别为.点为上不在坐标轴上的任意一点,且四条直线的斜率之积大于,则的离心率的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正数满足,则的最小值是__________.14.如图是一个边长为2的正方体的平面展开图,在这个正方体中,则下列说法中正确的序号是___________.①直线与直线垂直;②直线与直线相交;③直线与直线平行;④直线与直线异面;15.如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的总成绩是445,则污损的数字是________16.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,(1)求数列的通项公式;(2)设数列是首项为1,公比为2的等比数列,求数列的前项和.18.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:19.(12分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.20.(12分)如图,在四棱锥PABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱锥PADM的体积21.(12分)已知是抛物线上的焦点,是抛物线上的一个动点,若动点满足,则的轨迹方程.22.(10分)如图所示,在三棱柱中,平面,,,,点,分别在棱和棱上,且,,点为棱的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求,然后求.【详解】,,.故选:A2、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题3、C【解析】由题意,直线的斜率为,利用点斜式即可得答案.【详解】解:因为直线与直线平行,所以直线的斜率为,又直线过点,所以直线的方程为,即,故选:C.4、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C5、D【解析】当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列6、A【解析】先解不等式,然后由区间长度比可得.【详解】解不等式,得,所以,即的概率为.故选:A7、B【解析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B8、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C9、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B10、D【解析】由方程得到斜率,然后可得其倾斜角.【详解】因为直线的斜率为所以其倾斜角为故选:D11、B【解析】根据等比数列的性质可求.【详解】因为为等比数列,设公比为,则,解得,又,所以.故选:B.12、A【解析】设,求得,得到,求得,结合,即可求解.【详解】由椭圆的方程,可得,设,则,由,因为四条直线的斜率之积大于,即,所以,则离心率,又因为椭圆离心率,所以椭圆的离心率的取值范围是.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】利用“1”代换,结合基本不等式求解.【详解】因为,,所以,当且仅当,即时等号成立,所以当时,取得最小值8.故答案为:8.14、①④【解析】画出正方体,,,故,①正确,根据相交推出矛盾得到②错误,根据,与相交得到③错误,排除共面的情况得到④正确,得到答案.【详解】如图所示的正方体中,,,故,①正确;若直线与直线相交,则四点共面,即在平面内,不成立,②错误;,与相交,故直线与直线不平行,③错误;,与不平行,故与不平行,若与相交,则四点共面,在平面内,不成立,故直线与直线异面,④正确;故答案为:①④.15、3【解析】设污损的叶对应的成绩是x,由茎叶图可得445=83+83+87+x+99,解得x=93,故污损的数字是3.考点:茎叶图.16、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据等差数列条件列方程,即可求通项公式;(2)先由等比数列通项公式求出,解得,分组求和即可.【小问1详解】设等差数列的公差为,则,∴,由,∴,∴数列的通项公式为.【小问2详解】∵数列是首项为1,公比为2的等比数列,∴,即,∴,∴.18、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而将问题转化为只需证对任意恒成立,再次构造函数,利用导数求出其最大值小于等于即可【详解】(1)解:∵函数的图象在点处的切线与平行,∴,解得;证明:(2)由(1)得即对任意恒成立,令,则,∵当时,,∴函数在上单调递增,∵,∴对任意恒成立,即对任意恒成立,∴只需证对任意恒成立即可,即只需证对任意恒成立,令,则,由单调递减,且知,函数在上单调递增,在上单调递减,∴,∴得证,故不等式对任意恒成立19、(1)(2)【解析】(1)根据△恰为等边三角形由题意知:得到,再利用抛物线的定义求解;(2)联立,结合韦达定理,根据的夹角为,由求解.【小问1详解】解:由题意知:,由抛物线的定义知:,由,解得,所以抛物线方程为;【小问2详解】设,由,得,则,,则,,因为向量的夹角为,所以,,则,且,所以,解得,所以实数的取值范围.20、(1)证明见解析;(2).【解析】(1)过M作MN∥CD交PD于点N,证明四边形ABMN为平行四边形,即可证明BM∥平面PAD.(2)过B作AD的垂线,垂足为E,证明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱锥P-ADM的体积.【详解】解:(1)证明:如图,过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四边形ABMN为平行四边形∴BM∥AN.又BM⊄平面PAD,AN⊂平面PAD∴BM∥平面PAD.(2)如图,过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD∴PD⊥BE.又AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴点M到平面PAD的距离等于点B到平面PAD的距离,即BE.连接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=则三棱锥PADM的体积VP-ADM=VM-PAD=×S△PAD×BE=×3×=.21、【解析】由抛物线的方程可得到焦点坐标,设,写出向量的坐标,由向量间的关系得到,将点代入物线即可得到轨迹方程.【详解】由抛物线可得:设①在上,将①代入可得:,即.【点睛】求轨迹方程,一般是求谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.22、(1)证明见解析(2)【解析】(1)构建空间直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯工程合同范本
- 假期辅导协议书
- 编撰出书协议合同
- 代资的合同范本
- 精粉销售合同范本
- 全友家居协议书
- 绿化景观合同范本
- 租赁发包合同范本
- 医美手术协议书
- 终止投资协议书
- 2025-2026学年湘美版小学美术四年级(上册)期末测试卷附答案(4套)
- 2025年1月黑龙江省普通高中学业水平合格性考试物理试卷(含答案)
- 江西省三新协同体2025-2026年高一上12月思想政治试卷(含解析)
- 知识点及2025秋期末测试卷(附答案)-苏教版(新教材)小学科学小学科学二年级上册
- 2025安徽芜湖市鸠江区人民医院招聘工作人员21人笔试考试参考试题及答案解析
- 企业财务尽调咨询服务合同
- 企业税务规划合规审查手册
- 2026年山西工程职业学院单招职业技能考试题库及答案解析(名师系列)
- 附件扭转诊治中国专家共识(2024年版)解读
- 社区工作者社工面试题及答案解析
- 2024年福建省特殊技能人才录用公安特警队员笔试真题
评论
0/150
提交评论