版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省南通市第一中学数学高二上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.32.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.3.2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A. B.C. D.4.在等差数列中,,,则()A. B.C. D.5.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.6.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.027.已知等差数列满足,则等于()A. B.C. D.8.已知椭圆方程为:,则其离心率为()A. B.C. D.9.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或2310.双曲线的渐近线方程为()A. B.C. D.11.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-112.直线的倾斜角为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若球的大圆的面积为,则该球的表面积为___________.14.若数列的前n项和,则其通项公式________15.已知等差数列满足,请写出一个符合条件的通项公式______16.已知点和,M是椭圆上一动点,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆M经过点F(2,0),且与直线x=-2相切.(1)求圆心M的轨迹C的方程;(2)过点(-1,0)的直线l与曲线C交于A,B两点,若,求直线l的斜率k的取值范围.18.(12分)已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积19.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的标准方程;(2)已知,经过点的直线与椭圆交于、两点,若原点到直线的距离为,且,求直线的方程.20.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求21.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.2、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质3、A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A4、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.5、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.6、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C7、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.8、B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B9、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.10、A【解析】直接求出,,进而求出渐近线方程.【详解】中,,,所以渐近线方程为,故.故选:A11、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A12、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.14、【解析】由和计算【详解】由题意,时,,所以故答案为:15、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)16、【解析】由题设条件可知,.当M在直线与椭圆交点上时,在第一象限交点时有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值.由此能够求出的最大值.【详解】解:A为椭圆右焦点,设左焦点为,则由椭圆定义,于是.当M不在直线与椭圆交点上时,M、F、B三点构成三角形,于是,而当M在直线与椭圆交点上时,在第一象限交点时,有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值为.故答案为:.【点睛】本题考查椭圆的基本性质,解题时要熟练掌握基本公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设圆心,轨迹两点的距离公式列出方程,整理方程即可;(2)设直线l的方程和点A、B的坐标,直线方程联立抛物线方程,消去x得出关于y的一元二次方程,结合根的判别式和韦达定理表示出弦,进而列出不等式,解之即可.【小问1详解】设圆心,由题意知,,整理,得,即圆心M的轨迹C方程为:;【小问2详解】由题意知,过点(-1,0)的直线l与抛物线C相交于点A、B,所以直线l的斜率存在且不为0,设直线,点,则,消去x,得,或,,同理可得,所以,即,由,得,解得,综上,或,所以或,即直线l的斜率的取值范围为.18、(1);(2)【解析】(1)由题设可得,结合向量的共线坐标表示求的坐标;(2)向量的坐标运算求边长,由余弦定理求,进而求其正弦值,再应用三角形面积公式求面积.【小问1详解】由题设,,令,则,∴,可得,故.【小问2详解】由(1),,,则,又,则,∴平行四边形的面积.19、(1);(2).【解析】(1)由已知条件可得出关于、、的方程组,求出这三个量的值,由此可得出椭圆的标准方程;(2)分析可知直线的斜率存在且不为零,设直线的方程为,由点到直线的距离公式可得出,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,代入韦达定理求出、的值,由此可得出直线的方程.【详解】(1)设椭圆的焦距为,则,解得,因此,椭圆的标准方程为;(2)若直线斜率不存在,则直线过原点,不合乎题意.所以,直线的斜率存在,设斜率为,设直线方程为,设、,原点到直线的距离为,,即①.联立直线与椭圆方程可得,则,则,由韦达定理可得,.,则为线段的中点,所以,,,得,,所以,,整理可得,解得,即,,因此,直线的方程为或.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.20、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和21、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.因为平面,平面,平面平面,所以,又,则.由(1)知:平面,平面,则.又,即平面.【小问3详解】由(2)可知,四边形为正方形,所以.因为,,两两垂直,如图,以为原点,建立空间直角坐标系,则,,,,,,所以,.由(1)知:平面的一个法向量为.设平面的法向量为,则,令,则.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.22、(1)(2)【解析】(1)利用正弦定理化简,通过两角和与差的三角函数求出,即可得到结果(2)利用三角形的面积求出,通过由余弦定理求解即可【详解】解:(1)因为bcosA=(2c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年苏州高博软件技术职业学院单招职业适应性测试题库及参考答案详解一套
- 2026年成都农业科技职业学院单招职业适应性测试题库及参考答案详解1套
- 税务今日面试题及答案
- 基于循证的慢性阻寒性肺疾病患者护理
- 2025~2026学年济南天桥区泺口实验学校九年级上学期12月份数学考试试卷以及答案
- 2025年大庆市中医医院招聘备考题库及答案详解1套
- 家电行业市场前景及投资研究报告:双11家电品类消费者趋势
- 2025年陆军军医大学西南医院护士长招聘备考题库及1套参考答案详解
- 2025年江西省鹰潭产融私募基金管理有限公司投资经理招聘备考题库及一套完整答案详解
- 2025年三明地区备考题库编内招聘24人备考题库及参考答案详解一套
- 2024年北京广播电视台招聘真题
- 危险废物安全措施课件
- 形势与政策(吉林大学)单元测试(第11-25章)
- 2025版寄生虫病症状解析与护理方法探讨
- 2025年国家开放大学(电大)《物理化学》期末考试备考题库及答案解析
- 无领导小组讨论面试技巧与实战案例
- 2025年及未来5年中国养老产业行业发展趋势预测及投资规划研究报告
- 2025年中国办公楼租户调查分析报告
- 环保设备销售培训
- 髋臼骨折的护理课件
- 国际中文教育概论 课件 第12章 国际中文教育前瞻
评论
0/150
提交评论