版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州寻乌县第二中学2026届高二上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣22.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)3.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.4.二项式的展开式中,各项二项式系数的和是()A.2 B.8C.16 D.325.“”是“圆与轴相切”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.数列满足,,则()A. B.C. D.27.是双曲线:上一点,已知,则的值()A. B.C.或 D.8.已知数列满足,且,则的值为()A.3 B.C. D.9.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.10.平面的法向量,平面的法向量,已知,则等于()A B.C. D.11.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体,点在底面内运动,且始终保持平面,设直线与底面所成的角为,则的最大值为______.14.已知函数,,对一切,恒成立,则实数的取值范围为________.15.已知曲线,则曲线在点处的切线方程为____________.16.已知,,且,则的最小值为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求B;(2)若,求的面积的最大值18.(12分)(1)解不等式;(2)若关于x的不等式解集为R,求实数k的取值范围.19.(12分)已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值(1)求椭圆的方程;(2)求面积的最大值20.(12分)已知椭圆的离心率为,且点在椭圆上(1)求椭圆的标准方程;(2)若过定点的直线交椭圆于不同的两点、(点在点、之间),且满足,求的取值范围.21.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.22.(10分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.2、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.3、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.4、D【解析】根据给定条件利用二项式系数的性质直接计算作答.【详解】二项式的展开式的各项二项式系数的和是.故选:D5、A【解析】根据充分不必要条件的定义和圆心到轴的距离求出可得答案.【详解】时,圆的圆心坐标为,半径为2,此时圆与轴相切;当圆与轴相切时,因为圆的半径为2,所以圆心到轴的距离为,所以,“”是“圆与轴相切”的充分不必要条件故选:A6、C【解析】根据已知分析数列周期性,可得答案【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档7、B【解析】根据双曲线定义,结合双曲线上的点到焦点的距离的取值范围,即可求解.【详解】双曲线方程为:,是双曲线:上一点,,,或,又,.故选:B8、B【解析】根据题意,依次求出,观察规律,进而求出数列的周期,然后通过周期性求得答案.【详解】因为数列满足,,所以,所以,,,可知数列具有周期性,周期为3,,所以.故选:B9、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.10、A【解析】根据两个平面平行得出其法向量平行,根据向量共线定理进行计算即可.【详解】由题意得,因为,所以(),即,解得,所以.故选:A11、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.12、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画出立体图形,因为面面,在底面内运动,且始终保持平面,可得点在线段上运动,因为面面,直线与底面所成的角和直线与底面所成的角相等,即可求得答案.【详解】连接和,面面在底面内运动,且始终保持平面可得点在线段上运动,面面,直线与底面所成的角和直线与底面所成的角相等面直线与底面所成的角为:有图像可知:长是定值,当最短时,,即最大,即角最大设正方体的边长为,故故答案为:【点睛】本题考查了求线面角的最大值,解题是掌握线面角的定义和处理动点问题时,应画出图形,寻找几何关系,考查了分析能力和计算能力,属于难题.14、【解析】通过分离参数,得到关于x的不等式;再构造函数,通过导数求得函数的最值,进而求得a的取值范围【详解】因为,代入解析式可得分离参数a可得令()则,令解得所以当0<x<1,,所以h(x)在(0,1)上单调递减当1<x,,所以h(x)在(1,+∞)上单调递增,所以h(x)在x=1时取得极小值,也即最小值所以h(x)≥h(1)=4因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范围为【点睛】本题综合考查了函数与导数的应用,分离参数法,利用导数求函数的最值,属于中档题15、【解析】求解导函数,然后根据导数的几何意义求出切线斜率,并计算,利用点斜式写出切线方程.【详解】,由题意,切线的斜率为,,所以曲线在点处的切线方程为,即.故答案为:16、25【解析】根据,,且,由,利用基本不等式求解.【详解】因为,,且,所以,当且仅当,即时,等号成立,所以的最小值为25,故答案为:25三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1):根据正弦定理由边化角和三角正弦和公式即可求解;(2):根据余弦定理和均值不等式求得最大值,利用面积公式即可求解【小问1详解】由正弦定理及,得,∵,∵,∴【小问2详解】由余弦定理,∴,∴,当且仅当时等号成立,∴的面积的最大值为18、(1);(2).【解析】(1)直接求解不含参数的一元二次不等式即可;(2)分与两种情况进行讨论即可求出结果.【详解】(1)不等式可化为,解集为(2)若的解集为R,当时,的解集为,不合题意;当时,则解得综上,实数k的取值范围是19、(1)(2)【解析】(1)由抛物线焦点可得c,再根据离心率可得a,即得b;(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值【详解】试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积S=∴当t=0,△OAB面积的最大值为.20、(1)(2)【解析】(1)代入点坐标,结合离心率,以及即得解;(2)设直线方程,与椭圆联立,转化为,结合韦达定理和判别式,分析即得解【小问1详解】由题意可知:,解得:椭圆的标准方程为:【小问2详解】①当直线斜率不存在,方程为,则,.②当直线斜率存在时,设直线方程为,联立得:.由得:.设,,则,,又,,,则,,所以,所以,解得:,又,综上所述:的取值范围为.21、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)22、(1)0.006;(2);(3).【解析】(1)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(2)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(3)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.【详解】(1)因为,所以(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为(3)受访职工评分在[50,60)的有:50×0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手工艺术市场经营准则承诺书范文6篇
- 服装设计师的业绩考核绩效评定表
- 金融投资风险管控承诺书(4篇)
- 2026年云南省卫生健康委员会所属部分事业单位第二批校园招聘(83人)参考考试题库及答案解析
- 2025年西安市临潼区秦汉学校教师招聘备考核心题库及答案解析
- 电力设备检修技术人员安全与绩效考评表
- 文化娱乐业演出策划人活动策划及执行效果绩效考核表
- 2025四川省旅游投资集团有限责任公司招聘3人备考核心试题附答案解析
- 餐饮店主营业额增长绩效评定表
- 2026年云南金江沧源水泥工业有限公司专业技术岗招聘(5人)考试重点试题及答案解析
- 常用心理测量评定量表
- 螺线管内介质边界条件研究
- 高中物理 人教版 必修二 圆周运动-2 向心力 (第一课时)
- 疾病监测课件
- 灵芝孢子粉胶囊课件
- GB/T 13033.1-2007额定电压750V及以下矿物绝缘电缆及终端第1部分:电缆
- GB/T 11446.5-2013电子级水中痕量金属的原子吸收分光光度测试方法
- 人教版高中地理必修一第二章《地球上大气》单元检测试题
- 日立电梯MCA调试培训课件
- 危险化学品术语
- 食品配送应急处突保障全新预案
评论
0/150
提交评论