版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省华中师大一附中2026届高二上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或232.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.3.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.24.若函数,则()A. B.C.0 D.15.已知,且,则实数的值为()A. B.3C.4 D.66.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.8.我们通常称离心率是的椭圆为“黄金椭圆”.如图,已知椭圆,,,,分别为左、右、上、下顶点,,分别为左、右焦点,为椭圆上一点,下列条件中能使椭圆为“黄金椭圆”的是()A. B.C.轴,且 D.四边形的一个内角为9.设,,,则下列不等式中一定成立的是()A. B.C. D.10.已知向量分别是直线的方向向量,若,则()A. B.C. D.11.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.12.对于圆上任意一点的值与x,y无关,有下列结论:①当时,r有最大值1;②在r取最大值时,则点的轨迹是一条直线;③当时,则.其中正确的个数是()A.3 B.2C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的一条渐近线的一个方向向量为,则______(写出一个即可)14.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______15.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______16.在平面直角坐标系中,直线与椭圆交于两点,且,则该椭圆的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.18.(12分)如图,在四棱锥中,底面是矩形,平面于点M连接.(1)求证:平面;(2)求平面与平面所成角的余弦值.19.(12分)已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为与双曲线交于两点,求的面积.20.(12分)已知数列,,其中,是各项均为正数的等比数列,满足,,且(1)求数列,的通项公式;(2)设,求数列的前n项和21.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.22.(10分)已知数列是公差不为0的等差数列,数列是公比为2的等比数列,是,的等比中项,,.(1)求数列,的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.2、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.3、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A4、A【解析】构造函数,再用积的求导法则求导计算得解.【详解】令,则,求导得:,所以.故选:A5、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B6、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.7、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.8、B【解析】先求出椭圆的顶点和焦点坐标,对于A,根据椭圆的基本性质求出离心率判断A;对于B,根据勾股定理以及离心率公式判断B;根据结合斜率公式以及离心率公式判断C;由四边形的一个内角为,即即三角形是等边三角形,得到,结合离心率公式判断D.【详解】∵椭圆∴对于A,若,则,∴,∴,不满足条件,故A不符合条件;对于B,,∴∴,∴∴,解得或(舍去),故B符合条件;对于C,轴,且,∴∵∴,解得∵,∴∴,不满足题意,故C不符合条件;对于D,四边形的一个内角为,即即三角形是等边三角形,∴∴,解得∴,故D不符合条件故选:B【点睛】本题主要考查了求椭圆离心率,涉及了勾股定理,斜率公式等的应用,充分利用建立的等式是解题关键.9、B【解析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,所以,故B正确;对于C中,令,,,,满足,,但,故C错误;对于D中,令,,,,满足,,但,故D错误故选:B10、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题11、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C12、B【解析】可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,圆在两直线内部,则,的距离为,则,,对于①,当时,r有最大值1,得出结论;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,得出结论;对于③当时,则得出结论.【详解】设,故可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,可知直线平移时,点与直线,的距离之和均为,的距离,即此时圆在两直线内部,,的距离为,则,对于①,当时,r有最大值1,正确;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,正确;对于③当时,则即,解得或,故错误.故正确结论有2个,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】写出双曲线的渐近线方程,结合方向向量的定义求即可.【详解】由题设,双曲线的渐近线方程为,又是一条渐近线的一个方向向量,所以或或或,所以或.故答案为:(答案不唯一)14、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:15、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:16、【解析】直线与椭圆相交,求交点,利用列式求解即可.【详解】联立方程得,因为,所以,即,所以,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.18、(1)证明见详解(2)【解析】(1)连接,交于点,则为中点,再由等腰三角形三线合一可知为中点,连接,利用中位线可知,根据直线与平面平行的判定定理即可证明;(2)根据题意建立空间直角坐标系,求出两个平面的法向量,利用向量法即可求出两平面所成角的余弦值.【小问1详解】连接,交于点,则为中点,因为,于,则为中点,连接,则,又因为平面,平面,所以平面;【小问2详解】如图所示,以点为坐标原点,建立空间直角坐标系,则,,设平面的一个法向量为,由可得,令,得,即,易知平面的一个法向量为,设平面与平面所成角为,,则平面与平面所成角的余弦值为.19、(1);(2).【解析】(1)由两条双曲线有共同渐近线,可令双曲线方程为,求出即可得双曲线的方程;(2)根据已知有直线为,由其与双曲线的位置关系,结合弦长公式、点线距离公式及三角形面积公式求的面积.【详解】(1)设所求双曲线方程为,代入点得:,即,∴双曲线方程为,即.(2)由(1)知:,即直线方程为.设,联立得,满足且,,由弦长公式得,点到直线的距离.所以【点睛】本题考查了双曲线,根据双曲线共渐近线求双曲线方程,由直线与双曲线的相交位置关系求原点与交点构成三角形的面积,综合应用了弦长公式、点线距离公式、三角形面积公式,属于基础题.20、(1),(2)【解析】(1)利用公式法,基本量代换求出数列,的通项公式;(2)利用错位相减法求和.【小问1详解】设等比数列的公比为q,因为,所以,所以.所以,所以,所以.所以,所以,【小问2详解】,所以,,所以.所以21、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国家知识产权局专利局专利审查协作河南中心专利审查员招聘考试真题
- 黑龙江大学《综合英语》2025 学年第二学期期末试卷
- 安卓课程设计简单题目
- 2025年上海大学上海市科创教育研究院招聘行政专员备考题库参考答案详解
- 2025 九年级语文下册议论文论据选择标准课件
- 2025 九年级语文下册新闻阅读与写作指导课件
- 2025年南昌农商银行中层管理岗位人员招聘5人备考题库及完整答案详解一套
- 2025广东江门恩平市公安局警务辅助人员招聘41人(第二批)备考核心试题附答案解析
- 2025广州东站江门市江海区银信资产管理有限公司招聘1人参考考试题库及答案解析
- c语言课程设计年龄
- 人教版美术-装饰画教学课件
- pronterface使用手册打开Pronterface软件后在未连接机之前呈现灰面
- 焊装夹具设计制造技术要求
- 大金龙纯电动车hvcm及bms外网协议
- NY/T 455-2001胡椒
- GB/T 18710-2002风电场风能资源评估方法
- 《家庭、私有制和国家的起源》课件
- 正确使用CS100主动脉内球囊反搏泵-不良反应-常见问题课件
- 安徽开放大学合同法形考任务2(第5-8章权重30%)答卷
- 水土保持工程施工监理实务课件
- (建设银行)供应链融资产品介绍课件
评论
0/150
提交评论