西藏省2026届数学高一上期末联考模拟试题含解析_第1页
西藏省2026届数学高一上期末联考模拟试题含解析_第2页
西藏省2026届数学高一上期末联考模拟试题含解析_第3页
西藏省2026届数学高一上期末联考模拟试题含解析_第4页
西藏省2026届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏省2026届数学高一上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,其中,则的最小值为()A.1 B.2C. D.32.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.3.已知函数的图象经过点,则的值为()A. B.C. D.4.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件5.直线的倾斜角是()A.30° B.60°C.120° D.150°6.已知函数是奇函数,则A. B.C. D.7.设,则A. B.C. D.8.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.19.已知集合,区间,则=()A. B.C. D.10.用反证法证明命题:“已知.,若不能被7整除,则与都不能被7整除”时,假设的内容应为A.,都能被7整除 B.,不能被7整除C.,至少有一个能被7整除 D.,至多有一个能被7整除二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数x、y满足,则的最小值为____________.12.如图,扇形的面积是1,它的弧长是2,则扇形的圆心角的弧度数为______13.计算___________.14.不等式的解集为__________.15.在平面四边形中,,若,则__________.16.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,不等式解集为,设(1)若存在,使不等式成立,求实数的取值范围;(2)若方程有三个不同的实数解,求实数的取值范围18.某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适,并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份(参考数据:lg2≈03010,lg3≈0.4771)19.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,(1)若从甲校和乙校报名的教师中各选1名,求选出的两名教师性别相同的概率(2)若从报名的6名教师中任选2名,求选出的两名教师来自同一学校的概率20.为了在冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层、某栋房屋要建造能使用20年的隔热层,每厘米厚的隔热层的建造成本是6万元,该栋房屋每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:,若无隔热层,则每年能源消耗费用为5万元.设为隔热层建造费用与使用20年的能源消耗费用之和.(1)求和的表达式;(2)当隔热层修建多少厘米厚时,总费用最小,并求出最小值.21.已知是定义在上的偶函数,当时,.(1)求在时的解析式;(2)若,在上恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用向量坐标求模得方法,用表示,然后利用三角函数分析最小值【详解】因为,所以,因为,所以,故的最小值为.故选A【点睛】本题将三角函数与向量综合考察,利用三角函数得有界性,求模长得最值2、C【解析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.3、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.4、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.5、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】由函数的奇偶性求出,进而求得答案【详解】因为是奇函数,所以,即,则,故.【点睛】本题考查函数的奇偶性,属于基础题7、B【解析】因为,所以.选B8、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.9、D【解析】利用交集的运算律求【详解】∵,,∴.故选:D.10、C【解析】根据用反证法证明数学命题的步骤和方法,应先假设命题的否定成立而命题“与都不能被7整除”的否定为“至少有一个能被7整除”,故选C【点睛】本题主要考查用反证法证明数学命题,把要证结论进行否定,得到要证的结论的反面,是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.12、【解析】根据扇形的弧长公式和面积公式,列出方程组,即可求解.【详解】由题意,设扇形所在圆的半径为,扇形的弧长为,因为扇形的面积是1,它的弧长是2,由扇形的面积公式和弧长公式,可得,解得,.故答案为2.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和扇形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、2【解析】利用指数、对数运算法则即可计算作答.【详解】.故答案:214、【解析】由不等式,即,所以不等式的解集为.15、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.16、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由不等式的解集为可知是方程的两个根,即可求出,根据的单调性求出其在的最大值,即可得出m的范围;(2)方程可化为,令,则有两个不同的实数解,,根据函数性质可列出不等式求解.【详解】(1)∵不等式的解集为∴,是方程的两个根∴,解得.∴则∴存在,使不等式成立,等价于在上有解,而在时单调递增,∴∴的取值范围为(2)原方程可化为令,则,则有两个不同的实数解,,其中,,或,记,则①,解得或②,不等式组②无实数解∴实数的取值范围为【点睛】本题考查一元二次不等式的解集与方程的根的关系,考查函数的单调性,考查利用函数性质解决方程解的情况,属于较难题.18、(1)选择较为合适;(2)6月【解析】(1)根据指数函数和幂函数的性质可得合适的函数的模型.(2)根据选择的函数模型可求最小月份.小问1详解】指数函数随着自变量的增大其函数的增长速度越大,幂函数随着自变量的增大其函数的增长速度越小,因为凤眼莲在湖中的蔓延速度越来越快,故选择较为合适.故,故,.所以.【小问2详解】由(1),放入面积为,令,则,故凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份为6月.19、(1)(2)【解析】(1)利用古典概型概率公式可知(2)从报名的6名教师中任选2名,求选出的两名教师来自同一学校的情况为,则20、(1),(2)隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元【解析】(1)由已知,又不建隔热层,每年能源消耗费用为5万元.所以可得C(0)=5,由此可求,进而得到.由已知建造费用为6x,根据隔热层建造费用与20年的能源消耗费用之和为f(x),可得f(x)的表达式(2)由(1)中所求的f(x)的表达式,利用基本不等式求出总费用f(x)的最小值【小问1详解】因为,若无隔热层,则每年能源消耗费用为5万元,所以,故,因为为隔热层建造费用与使用20年的能源消耗费用之和,所以.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论