版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨第六中学2026届高二上数学期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.2.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.253.()A. B.C. D.4.数列,则是这个数列的第()A.项 B.项C.项 D.项5.已知直线,,,则m值为()A. B.C.3 D.106.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等7.在等比数列中,,,则()A. B.或C. D.或8.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切9.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.51210.若离散型随机变量的所有可能取值为1,2,3,…,n,且取每一个值的概率相同,若,则n的值为()A.4 B.6C.9 D.1011.在空间中,“直线与没有公共点”是“直线与异面”的()A.必要不充分条件 B.充要条件C.充分不必要条件 D.既不充分也不必要条件12.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或4二、填空题:本题共4小题,每小题5分,共20分。13.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.14.已知数列{an}的前n项和Sn=n2+n,则an=_____15.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.18.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.19.(12分)某工厂为了解甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线生产的产品中各随机抽取了1000件产品,并对所抽取产品的某一质量指数进行检测,根据检测结果按分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在内时为优等品.(1)用统计有关知识判断甲、乙两条生产线所生产产品的质量哪一条更好,并说明理由(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从该工厂样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,求抽取到的2件产品都是甲生产线生产的概率.20.(12分)已知直线,,,其中与交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程21.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程22.(10分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D2、A【解析】由题意可得焦点在轴上,由,可得k的值.【详解】∵椭圆的一个焦点是,∴,∴,故选:A3、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.4、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.5、C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C6、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D7、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.8、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C9、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.10、D【解析】根据分布列即可求出【详解】因为,所以故选:D11、A【解析】由于在空间中,若直线与没有公共点,则直线与平行或异面,再根据充分、必要条件的概念判断,即可得到结果.【详解】在空间中,若直线与没有公共点,则直线与平行或异面.故“直线与没有公共点”是“直线与异面”的必要不充分条件.故选:A.12、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.14、2n【解析】根据数列的通项与前n项和的关系求解即可.【详解】由题,当时,,当时.当时也满足.故.故答案为:【点睛】本题主要考查了根据数列的通项与前n项和的关系求通项公式的方法,属于基础题.15、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:16、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)公司每天包裹的平均数和中位数都为260件.(2)该公司平均每天的利润有1000元.(3).【解析】(1)对于平均数,运用平均数的公式即可;由于中位数将频率分布直方图分成面积相等的两部分,先确定中位数位于哪一组,然后建立关于中位数的方程即可求出.(2)利用每天的总收入减去工资的支出,即可得到公司每天的利润.(3)该为古典概型,根据题意分别确定总的基本事件个数,以及事件“快递费为45元”包括的基本事件个数,即可求出概率.【详解】(1)每天包裹数量的平均数为;或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为设中位数为x,易知,则,解得x=260.所以公司每天包裹的平均数和中位数都为260件.(2)由(1)可知平均每天的揽件数为260,利润为(元),所以该公司平均每天的利润有1000元(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重(千克),礼物B、C、D共重(千克),都超过5千克,故E和F的重量数分别有,,,,共5种,对应的快递费分别为45、45、50,45,50(单位:元)故所求概率为.【点睛】主要考查了频率分布直方图的平均数,中位数求解,以及古典概型,属于中档题.18、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.19、(1)甲更好,详细见解析(2)【解析】(1)根据频率分布直方图计算甲、乙两条生产线所生产产品的质量指数的平均数,比较大小即可得答案;(2)由题意可知,甲、乙生产线的样品中优等品件数,利用分层抽样可得从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;列出抽取到的2件产品的所有基本事件,根据古典概型计算即可.【小问1详解】解:甲生产线所生产产品的质量指数的平均数为:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生产线所生产产品的质量指数的平均数为:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因为,所以甲生产线生产产品质量的平均水平高于乙生产线生产产品质量的平均水平,故甲生产线所生产产品的质量更好.【小问2详解】由题意可知,甲生产线的样品中优等品有件,乙生产线的样品中优等品有件,从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;从这6件产品中随机抽取2件的情况有:(a,b),(a,c),(a,d),(a,E),(a,F),(b,c),(b,d),(b,E),(b,F),(c,d),(c,E),(c,F),(d,E),(d,F),(E,F),共15种;其中符合条件的情况有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6种.故抽取到的2件产品都是甲生产线生产的概率为:20、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年公开招聘专业人才备考题库及完整答案详解1套
- 2026年苏州绕城高速公路有限公司公开招聘备考题库及一套参考答案详解
- 2026年宁波卫生职业技术学院公开招聘高层次人才(教师)备考题库带答案详解
- 2026年南海区桂城街道文翰第三小学教师招聘备考题库完整参考答案详解
- 2026年苏州工业园区胜浦实验小学教学辅助人员招聘备考题库及一套参考答案详解
- 中国人民财产保险股份有限公司吉安市分公司2026届校园招聘备考题库及答案详解(易错题)
- 2026年泉州消防第一季度政府专职消防员招聘备考题库及参考答案详解一套
- 福建医科大学2025年安全保卫工作人员招聘备考题库(十四)及一套答案详解
- 消化内科核心疾病急性胃炎讲解课件
- 2026年全国妇联所属在京事业单位公开招聘备考题库及一套答案详解
- 2025年常见非标机械设计师面试题及答案
- 员工冬季出行安全
- 单侧双通道脊柱内镜技术
- GB/T 14748-2025儿童呵护用品安全儿童推车
- 《粤港澳大湾区城际铁路建设工程资料管理规范》
- 期末复习知识清单 2024-2025学年统编版语文六年级上册
- 2025年中国碳氢清洗剂市场调查研究报告
- 2023年马原期末复习知识点总结超详细版
- 海水墙面防水施工方案设计
- 退化森林修复技术-洞察与解读
- 水箱安装施工质量管理方案
评论
0/150
提交评论