河北省保定市博野中学2026届数学高一上期末达标检测模拟试题含解析_第1页
河北省保定市博野中学2026届数学高一上期末达标检测模拟试题含解析_第2页
河北省保定市博野中学2026届数学高一上期末达标检测模拟试题含解析_第3页
河北省保定市博野中学2026届数学高一上期末达标检测模拟试题含解析_第4页
河北省保定市博野中学2026届数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市博野中学2026届数学高一上期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,,,则图中阴影部分表示的集合为A. B.C. D.2.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)3.若,且则与的夹角为()A. B.C. D.4.若幂函数的图象过点,则它的单调递增区间是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)5.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为()()A.1069千米 B.1119千米C.2138千米 D.2238千米6.已知集合,则()A. B.或C. D.或7.设,则a,b,c大小关系为()A. B.C. D.8.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.9.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.10.已知函数,则A.最大值为2,且图象关于点对称B.周期为,且图象关于点对称C.最大值为2,且图象关于对称D.周期为,且图象关于点对称二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,,,,则三棱锥的外接球的表面积为________.12.已知角A为△ABC的内角,cosA=-4513.设定义在区间上的函数与的图象交于点,过点作轴的垂线,垂足为,直线与函数的图象交于点,则线段的长为__________14.若,,则________.15.已知,且,写出一个满足条件的的值:______.16.已知向量,若,则m=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合.(1)若是空集,求取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.18.已知函数同时满足下列四个条件中的三个:①当时,函数值为0;②的最大值为;③的图象可由的图象平移得到;④函数的最小正周期为.(1)请选出这三个条件并求出函数的解析式;(2)对于给定函数,求该函数的最小值.19.已知集合,(1)当,求;(2)若,求的取值范围.20.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?21.已知函数(其中,)的图象与轴的任意两个相邻交点间的距离为,且直线是函数图象的一条对称轴.(1)求的值;(2)求的单调递减区间;(3)若,求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,阴影部分表示的集合为,选B.2、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C3、C【解析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角4、D【解析】设幂函数为y=xa,把点(2,)代入,求出a的值,从而得到幂函数的方程,再判断幂函数的单调递增区间.【详解】设y=xa,则=2a,解得a=-2,∴y=x-2其单调递增区间为(-∞,0)故选D.【点睛】本题考查了通过待定系数法求幂函数的解析式,以及幂函数的主要性质.5、D【解析】利用弧长公式直接求解.【详解】嫦娥五号绕月飞行半径为400+1738=2138,所以嫦娥五号绕月每旋转弧度,飞过的路程约为(千米).故选:D6、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..7、C【解析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【详解】,,,又在上单调递增,,,故选:C8、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.9、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.10、A【解析】,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A考点:三角函数的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.12、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:313、【解析】不妨设坐标为则的长为与的图象交于点,即解得则线段的长为点睛:本题主要考查的知识点是三角函数的图象及三角函数公式的应用.突出考查了数形结合的思想,同时也考查了考生的运算能力,本题的关键是解出是这三点的横坐标,而就是线段的长14、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:15、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:016、-1【解析】求出的坐标,由向量共线时坐标的关系可列出关于的方程,从而可求出的值.【详解】解:∵,∴,∵,,∴,解得.故答案为:-1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)时,;时,【解析】(1)有由是空集,可得方程无解,故,由此解得的取值范围;(2)若中只有一个元素,则或,求出的值,再把的值代入方程,解得的值,即为所求.试题解析:(1)要使为空集,方程应无实根,应满足解得.(2)当时,方程为一次方程,有一解;当,方程为一元二次方程,使集合只有一个元素的条件是,解得,.∴时,,元素为:;时,.元素为:18、(1)选择①②④三个条件,(2)【解析】(1)根据各条件之间的关系,可确定最大值1与②④矛盾,故③不符合题意,从而确定①②④三个条件;(2)将化简为,再通过换元转化为二次函数问题再求解.【小问1详解】①由条件③可知,函数的周期,最大值为1与②④矛盾,故③不符合题意.选择①②④三个条件.由②得,由④中,知,则,由①知,解得,又,则.所求函数表达式为.【小问2详解】由,令,那么,令,其对称轴为.当时,即时,在上单调递增,则;当时,即时,在上单调递减,在上单调递增,则;当时,即时,在上单调递减.则,综上所述可得19、(1)(2)【解析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为20、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论