2026届西南名校联盟高一数学第一学期期末复习检测试题含解析_第1页
2026届西南名校联盟高一数学第一学期期末复习检测试题含解析_第2页
2026届西南名校联盟高一数学第一学期期末复习检测试题含解析_第3页
2026届西南名校联盟高一数学第一学期期末复习检测试题含解析_第4页
2026届西南名校联盟高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届西南名校联盟高一数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,则向量与的夹角为()A. B.C. D.2.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要3.已知函数,则该函数的单调递减区间是()A. B.C. D.4.设,,,则,,的大小关系()A. B.C. D.5.函数定义域是A. B.C. D.6.已知集合,集合,则图中阴影部分表示的集合为()A. B.C. D.7.三棱锥的外接球为球,球的直径是,且,都是边长为1的等边三角形,则三棱锥的体积是A. B.C. D.8.已知命题,,则p的否定是()A., B.,C., D.,9.函数零点所在区间为A. B.C. D.10.在平面直角坐标系中,角的顶点与原点重合,角的始边与轴非负半轴重合,角的终边经过点,则()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积为_______________________.12.已知定义在上的偶函数在上递减,且,则不等式的解集为__________13.圆的半径是6cm,则圆心角为30°的扇形面积是_________14.的值__________.15.如果,且,则的化简为_____.16.若函数在区间上单调递增,则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域18.已知函数,其中m为实数(1)求f(x)的定义域;(2)当时,求f(x)的值域;(3)求f(x)的最小值19.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值20.已知,函数(1)求的定义域;(2)当时,求不等式的解集21.已知集合,.(1)若,求;(2)若,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:2、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A3、C【解析】先用诱导公式化简,再求单调递减区间.【详解】要求单调递减区间,只需,.故选:C.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式4、A【解析】根据指数函数和对数函数的单调性比大小.【详解】由已知得,,且,,所以.故选:A.5、A【解析】根据函数成立的条件即可求函数的定义域【详解】解:要使函数有意义,则,得,即,即函数的定义域为故选A【点睛】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.6、B【解析】由阴影部分表示的集合为,然后根据集合交集的概念即可求解.【详解】因为阴影部分表示的集合为由于.故选:B.7、B【解析】试题分析:取BC中点M,则有,所以三棱锥的体积是,选B.考点:三棱锥体积【思想点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解8、D【解析】由否定的定义写出即可.【详解】p的否定是,.故选:D9、C【解析】利用零点存在性定理计算,由此求得函数零点所在区间.【详解】依题意可知在上为增函数,且,,,所以函数零点在区间.故选C.【点睛】本小题主要考查零点存在性定理的运用,属于基础题.10、A【解析】根据任意角的三角函数定义即可求解.【详解】解:由题意知:角的终边经过点,故.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知得该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,根据圆锥和球体的体积公式可得答案.【详解】该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为,设制成的大铁球半径为,则,得,故大铁球的表面积为.故答案为:.12、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理13、3π【解析】根据扇形的面积公式即可计算.【详解】,.故答案为:3π.14、1【解析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【详解】解:.故答案为:1.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.15、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:16、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称中心为,单调递减区间为(2)【解析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区间的值域,即可得到函数在区间上的值域【详解】解(1)令,得:,∴的对称中心为,由,得:,∴的单调区间为(2)由题意:∵∴∴∴的值域为【点睛】本题主要考查了正弦型函数对称中心、单调性以及在给定区间的值域,属于中档题.18、(1)(2)[2,2](3)当时,f(x)的最小值为2;当时,f(x)的最小值为【解析】(1)根据函数解析式列出相应的不等式组,即可求得函数定义域;(2)令,采用两边平方的方法,即可求得答案;(3)仿(2),令,可得,从而将变为关于t的二次函数,然后根据在给定区间上的二次函数的最值问题求解方法,分类讨论求得答案.【小问1详解】由解得所以f(x)的定义域为【小问2详解】当时,设,则当时,取得最大值8;当或时,取得最小值4所以的取值范围是[4,8]所以f(x)的值城为[2,2]【小问3详解】设,由(2)知,,且,则令,,若,,此时的最小值为;若,当时,在[2,2上单调递增,此时的最小值为;当,即时,,此时的最小值为;当,即时,,此时的最小值为所以,当时,f(x)的最小值为2;当时,f(x)的最小值为19、(1)8(2)(3)【解析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的方程为即,有由,解得或圆过定点(3)圆N的方程,即①圆即②②-①得:圆M与圆N相交弦AB所在直线方程为:圆心M(0,6)到直线AB的距离弦长当时,线段AB长度有最小值.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;圆的问题经常应用的性质有垂径定理的应用,切线长定理的应用.20、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论