版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省大同市口泉中学数学高一上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象如图所示,则函数的零点为()A. B.C. D.2.已知是定义在R上的奇函数,在区间上为增函数,则不等式的解集为()A. B.C. D.3.已知函数在区间上单调递减,则实数的取值范围为()A. B.C. D.4.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.5.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.6.角的终边经过点,则的值为()A. B.C. D.7.函数y=8x2-(m-1)x+m-7在区间(-∞,-]上单调递减,则m的取值范围为()A. B.C. D.8.命题“”的否定为A. B.C. D.9.若第三象限角,且,则()A. B.C. D.10.在下列各区间上,函数是单调递增的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在上奇函数,且函数为偶函数,当时,,则______12.已知正数、满足,则的最大值为_________13.函数是幂函数且为偶函数,则m的值为_________14.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.15.计算:=___________16.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(1)若有两个零点,且的最小值为,当时,判断函数在上的单调性,并说明理由;(2)设,记为集合中元素的最大者与最小者之差.若对,恒成立,求实数a的取值范围.18.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围19.若存在实数、使得,则称函数为、的“函数”(1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式;(2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.)20.已知(1)若在第三象限,求的值(2)求的值21.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式;(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数的图象和零点的定义,即可得出答案.【详解】解:根据函数的图象,可知与轴的交点为,所以函数的零点为2.故选:B.2、C【解析】由奇函数知,再结合单调性及得,解不等式即可.【详解】由题意知:,又在区间上为增函数,当时,,当时,,由可得,解得.故选:C.3、A【解析】先由题意,求出函数的单调递减区间,再由题中条件,列出不等式组求解,即可得出结果.【详解】由题意,令,则,即函数的单调递减区间为,因为函数在区间上单调递减,所以,解得,所以,.故选:A.【点睛】关键点点睛:本题的关键是用不等式法求函数的单调递减区间时,应该令,且该函数的周期应为,则.4、B【解析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.5、A【解析】作出图形,由向量加法的三角形法则得出可得出答案.【详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【点睛】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.6、D【解析】根据三角函数定义求解即可.【详解】因为角的终边经过点,所以,,所以.故选:D7、A【解析】求出函数的对称轴,得到关于m的不等式,解出即可【详解】函数的对称轴是,若函数在区间上单调递减,则,解得:m≥0,故选A【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键8、D【解析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【详解】命题“”的否定为“”故选D【点睛】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换9、D【解析】由已知结合求出即可得出.【详解】因为第三象限角,所以,因为,且,解得或,则.故选:D.10、C【解析】根据选项的自变量范围判断函数的单调区间即可.【详解】当时,,由正弦函数单调性知,函数单增区间应满足,即,观察选项可知,是函数的单增区间,其余均不是,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出函数的周期即可求解.【详解】根据题意,为偶函数,即函数图象关于直线对称,则有,又由为奇函数,则,则有,即,即函数是周期为4的周期函数,所以,故答案为:12、【解析】利用均值不等式直接求解.【详解】因为且,所以,即,当且仅当,即时,等号成立,所以的最大值为.故答案为:.13、【解析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案.【详解】由函数是幂函数,则,得或当时,函数不是偶函数,所以舍去.当时,函数是偶函数,满足条件.故答案为:【点睛】本题考查幂函数的概念和幂函数的奇偶性,属于基础题.14、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.15、1【解析】.故答案为116、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数在区间上是单调递减,理由见解析(2)【解析】(1)运用单调性的定义去判断或者根据函数本身的性质去判断即可;(2)区间与二次函数的对称轴比较,从而的情况中分类讨论,而后得到的解析式,通过函数解析式求出最小值,再解不等式即可.【小问1详解】方法1:因为,由题意得,即,所以时,即,所以,,对于任意设,所以,因为,又,所以而,所以,所以,所以函数在区间上是单调递减的.方法2:因为,由题意得,即,所以时,即,所以,,因为,所以函数图像的对称轴方程为,因为,所以,即,所以函数在上是单调递减的.【小问2详解】设,,因为函数对称轴为,①当即时,在上单调递减,,②当即时,,③当即时,,④当即时,在上单调递增,,综上可得:可知在上单调递减,在上单调递增,所以最小值为,对,恒成立,只需即可,解得,所以a的取值范围是.18、(1)(2)【解析】(1)由幂函数定义列出方程,求出m的值,检验函数单调性,舍去不合题意的m的值;(2)在第一问的基础上,由函数单调性得到集合,由并集结果得到,从而得到不等式组,求出k的取值范围.【小问1详解】依题意得:,∴或当时,在上单调递减,与题设矛盾,舍去当时,上单调递增,符合要求,故.【小问2详解】由(1)可知,当时,函数和均单调递增∴集合,又∵,∴,∴,∴,∴实数k的取值范围是.19、(1),;(2)存在;,.【解析】(1)由已知条件可得出关于、的等式组,由此可解得函数、的解析式;(2)由偶函数的定义可得出,由函数的值域结合基本不等式以及对数函数的单调性可求得的值,进而可求得的值,即可得解.【小问1详解】解:因为为、的“函数”,所以①,所以因为为奇函数,为偶函数,所以,所以②联立①②解得,【小问2详解】解:假设存在实数、,使得为,的“函数”则①因为是偶函数,所以即,即,因为,整理得因为对恒成立,所②,因为,当且仅当,即时取等号所以,由于的值域为,所以,且又因为,所以,综上,存在,满足要求20、(1);(2)-3.【解析】直接利用三角函数关系式的恒等变换和同角三角函数关系式的应用求出结果直接利用三角函数关系式的恒等变换和同角三角函数关系式的应用求出结果【详解】由于所以,又在第三象限,故:,,则:由于:,所以:【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年老旧小区电梯更新改造合同
- 2026年洗衣机买卖合同
- 2026年污水处理工艺改进合同
- 保险退保协议2026年保险合同认证
- 2026年工程承包合同与施工安全
- 家私厂安全培训内容课件
- 家校工作培训课件制作
- 家政服务人员培训课件
- 新入职主任安全培训课件
- 培训档案教学课件
- 合作购车位协议书
- 2025重庆城口县国有企业公开招聘26人参考题库附答案
- 咨政类课题申报书
- 产科护士长2025年度述职报告
- 2026五个带头发言材料三
- 总承包管理实施指南
- DB3205-T 1123-2024 职业教育集团建设与运行规范
- 2025年铁路职业技能竞赛线路工理论考试试题库答案
- 钢结构加固施工方案及施工工艺流程方案
- 广东省东华高级中学2026届高一化学第一学期期末统考试题含解析
- 2025至2030中国全麦面粉行业项目调研及市场前景预测评估报告
评论
0/150
提交评论