版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市福州师范大学附属中学2026届数学高一上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在同一坐标系中,函数与大致图象是()A. B.C. D.2.将函数的图象上所有点的横坐标缩小到原来的倍,纵坐标保持不变,得到函数的图象,若,则的最小值为()A. B.C. D.3.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.4.设全集,,,则图中阴影部分表示的集合为A. B.C. D.5.设集合,,则()A. B.C. D.6.已知,且α是第四象限角,那么的值是()A. B.-C.± D.7.函数的零点所在的大致区间是A. B.C. D.8.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位9.已知函数,下列区间中包含零点的区间是()A. B.C. D.10.已知函数的定义域与值域均为,则()A. B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知正四棱锥的高为4,侧棱长为3,则该棱锥的侧面积为___________.12.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.13.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.14.若,则___________.15.已知函数的图象恒过定点,若点也在函数的图象上,则_________16.若向量,,且,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数(1)求的定义域;(2)当时,求不等式的解集18.已知.(1)化简;(2)若,求的值.19.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率20.已知圆的圆心在直线上,半径为,且圆经过点和点①求圆的方程②过点的直线截图所得弦长为,求直线的方程21.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,结合对数函数与指数函数的性质,即可得出结果.【详解】由指数函数与对数函数的单调性知:在上单调递增,在上单调递增,只有B满足.故选:B.2、D【解析】求出g(x)解析式,作出g(x)图像,根据图像即可求解﹒【详解】由题得,,,∵,∴=1且=-1或且=1,作的图象,∴的最小值为=,故选:D3、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.4、B【解析】,阴影部分表示的集合为,选B.5、D【解析】解一元二次不等式求出集合A,利用交集定义和运算计算即可【详解】由题意可得,则故选:D6、B【解析】由诱导公式对已知式子和所求式子进行化简即可求解.【详解】根据诱导公式:,所以,,故.故选:B【点睛】诱导公式的记忆方法:奇变偶不变,符号看象限.7、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题8、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同9、C【解析】根据函数零点的存在性定理,求得,即可得到答案.【详解】由题意,函数,易得函数为单调递减函数,又由,所以,根据零点的存在定理,可得零点的区间是.故选:C.10、A【解析】根据函数的定义域可得,,,再根据函数的值域即可得出答案.【详解】解:∵的解集为,∴方程的解为或4,则,,,∴,又因函数的值域为,∴,∴.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由高和侧棱求侧棱在底面射影长,得底面边长,从而可求得斜高,可得侧面积【详解】如图,正四棱锥,是高,是中点,则是斜高,由已知,,则,是正方形,∴,,,侧面积侧故答案为:【点睛】关键点点睛:本题考查求正棱锥的侧面积.在正棱锥计算中,解题关键是掌握四个直角三角形:如解析中图中,正棱锥的几乎所有量在这四个直角三角形中都有反应12、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.13、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等14、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题15、【解析】根据对数过定点可求得,代入构造方程可求得结果.【详解】,,,解得:.故答案为:.16、6【解析】本题首先可通过题意得出向量以及向量的坐标表示和向量与向量之间的关系,然后通过向量平行的相关性质即可得出结果。【详解】因为,,且,所以,解得。【点睛】本题考查向量的相关性质,主要考查向量平行的相关性质,若向量,,,则有,锻炼了学生对于向量公式的使用,是简单题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为18、(1)(2)【解析】(1)根据诱导公式化简;(2)巧用平方关系进行代换,再利用商数关系将原式转化为用表示,结合第1问解答【详解】(1)(2)将代入,得.【点睛】三角函数式的化简要求熟记相关公式,同角三角函数基本关系平方关可实现正弦和余弦的互化,要注意公式的逆使用,商数关系可实现正弦、余弦和正切的互化19、(1);20;(2)分,76.67分(3)【解析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.20、①.②.或【解析】①.由题意设出圆心坐标,结合圆经过的点得到方程组,求解方程组计算可得圆的方程为②.分类讨论直线的斜率存在和斜率不存在两种情况可得直线的方程为或试题解析:①由题意可知,设圆心为则圆为:,∵圆过点和点,∴,则即圆的方程为②设直线的方程为即,∵过点的直线截图所得弦长为,∴,则当直线的斜率不存在时,直线为,此时弦长为符合题意,即直线的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年国家电网招聘之电网计算机考试题库500道有完整答案
- 2026年国家电网招聘之公共与行业知识考试题库500道附答案(巩固)
- 2026年教师资格之中学综合素质考试题库500道含答案【培优a卷】
- 2026年计算机知识题库500道含答案【达标题】
- 2026年国家电网招聘之通信类考试题库300道附参考答案(黄金题型)
- 2026年国家电网招聘之文学哲学类考试题库300道附参考答案(a卷)
- 2025年期货从业资格考试题库及参考答案【能力提升】
- 2026年一级建造师之一建水利水电工程实务考试题库500道含答案(培优)
- 2026年理财规划师之三级理财规划师考试题库500道带答案(典型题)
- 2026年初级经济师之初级经济师人力资源管理考试题库500道带答案(精练)
- 《黄土原位测试规程》
- 冀教版(2024)三年级上册《称量物体》单元测试(含解析)
- 数学-湖南长郡中学、杭州二中、南师附中三校2025届高三4月联考试题+答案
- 医学三维可视化与虚拟现实技术:革新肝癌腹腔镜手术的探索与实践
- 统编版(2024)八年级上册历史新教材全册知识点复习提纲
- 水平定向钻施工技术应用与管理
- 风险金管理办法
- 校长在食堂从业人员培训会上的讲话
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全风险分级管控与隐患排查治理标准》
- 美育视域下先秦儒家乐教思想对舞蹈教育的当代价值研究
- 运输企业隐患排查奖惩制度
评论
0/150
提交评论