版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东东莞外国语学校2026届高二上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.2.已知等差数列的前项和为,若,则()A B.C. D.3.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等4.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.265.在等差数列{an}中,a1=1,,则a7=()A.13 B.14C.15 D.166.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.2 B.6C.4 D.127.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A、B两点,直线与抛物线C交于D、E两点,若与的斜率的平方和为2,则的最小值为()A.24 B.20C.16 D.128.若方程表示双曲线,则此双曲线的虚轴长等于()A. B.C. D.9.已知是空间的一个基底,若,,若,则()A. B.C.3 D.10.对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.12.已知数列满足,且,则()A.2 B.3C.5 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知函数(1)若时函数有三个互不相同的零点,求实数的取值范围;(2)若对任意的,不等式在上恒成立,求实数的取值范围14.对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.15.将某校全体高一年级学生期末数学成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图,现需要随机抽取60名学生进行问卷调查,采用按成绩分层随机抽样,则应抽取成绩不少于60分的学生人数为_______________.16.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和18.(12分)某校为了了解在校学生的支出情况,组织学生调查了该校2014年至2020年学生的人均月支出y(单位:百元)的数据如下表:年份2014201520162017201820192020年份代号t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中连续的两年里,两年人均月支出都超过4百元的概率;(2)求y关于t的线性回归方程;(3)利用(2)中的回归方程,预测该校2022年的人均月支出.附:最小二乘估计公式:,19.(12分)如图,在三棱锥中,,,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角正弦值.20.(12分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.21.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.22.(10分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.2、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.3、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.4、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A5、A【解析】利用等差数列的基本量,即可求解.【详解】设等差数列的公差为,,解得:,则.故选:A6、C【解析】根据题设条件求出椭圆的长半轴,再借助椭圆定义即可作答.【详解】由椭圆+y2=1知,该椭圆的长半轴,A是椭圆一个焦点,设另一焦点为,而点在BC边上,点B,C又在椭圆上,由椭圆定义得,所以的周长故选:C7、C【解析】设两条直线方程,与抛物线联立,求出弦长的表达式,根据基本不等式求出最小值【详解】抛物线的焦点坐标为,设直线:,直线:,联立得:,所以,所以焦点弦,同理得:,所以,因为,所以,故选:C8、B【解析】根据双曲线标准方程直接判断.【详解】方程即为,由方程表示双曲线,可得,所以,,所以虚轴长为,故选:B.9、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C10、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.11、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A12、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)【解析】(1)将函数有三个互不相同的零点转化为有三个互不相等的实数根,令,求导确定单调性求出极值即可求解;(2)求导确定单调性,结合以及得,由得,结合二次函数单调性求出最小值即可求解.【小问1详解】当时,.函数有三个互不相同的零点,即有三个互不相等的实数根令,则,令得或,在和上均减函数,在上为增函数,极小值为,极大值为,的取值范围是;【小问2详解】,且,当或时,;当时,函数的单调递增区间为和,单调递减区间为当时,,又,,又,又在上恒成立,即,即当时,恒成立在上单减,故最小值为,的取值范围是14、54【解析】由,利用裂项相消法求得,再由的定义求解.【详解】由已知可得:,,当时,,;当时,,;当时,,;当时,,;当时,;;所以.故答案为:54.15、48【解析】根据频率分布直方图,求出成绩不少于分的频率,然后根据频数频率总数,即可求出结果【详解】根据频率分布直方图,成绩不低于(分)的频率为,由于需要随机抽取名学生进行问卷调查,利用样本估计总体的思想,则应抽取成绩不少于60分的学生人数为人故答案为:16、【解析】设,由余弦定理知,所以,故填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件求,利用等差数列的通项公式可求得数列的通项公式.(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式;【小问2详解】由(1)得:,所以,所以.18、(1);(2);(3)7.8百元.【解析】(1)应用列举法,结合古典概型计算公式进行进行求解即可;(2)根据题中所给的公式进行计算求解即可;(3)根据(2)的结论,利用代入法进行求解即可.【小问1详解】2014年至2020年中连续的两年有、、、、、共6种组合,其中只有不满足连续两年人均月支出都超过4百元,所以连续两年人均月支出都超过4百元的概率为;【小问2详解】由已知数据分别求出公式中的量.,,,,所求回归方程为;小问3详解】由(2)知,,将2022年的年份代号代入(2)中的回归方程,得,故预测该校2022年人均月支出为7.8百元.19、(1)证明见解析;(2).【解析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果【详解】(1)因为,为的中点,所以,且连结因为,所以为等腰直角三角形,且由知由知平面(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系由已知得取平面的法向量设,则设平面的法向量为由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以与平面所成角的正弦值为【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”20、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.
(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.
(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,
∵该校高一年级共有学生640人,
∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.
(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,
成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.
若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,
则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),
(C,F),(D,E),(D,F),(E,F)共15种.
如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,
那么这两名学生的数学成绩之差的绝对值一定不大于10.
如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,
那么这两名学生数学成绩之差的绝对值一定大于10.
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.
∴所求概率为P(M)=.【点睛】本题主要考查频率分布直方图的应用以及古典概型概率的求法,还考查了运算求解的能力,属于中档题.21、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑劳务服务合同范本
- 广东税务代理合同范本
- 工程内页资料合同范本
- 护栏焊接安装合同范本
- 户外楼梯制作合同范本
- 异地搬迁项目合同协议
- 打印店代理合同协议书
- 小型土方清运合同范本
- 打包仓库配货合同范本
- 打包物品进货合同范本
- 小学生必读书试题及答案
- 销售部年终总结及明年工作计划
- 工作计划执行跟踪表格:工作计划执行情况统计表
- (完整版)现用九年级化学电子版教材(下册)
- 城市道路路基土石方施工合同
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 国家基本公共卫生服务项目之健康教育
- DL∕ T 1166-2012 大型发电机励磁系统现场试验导则
- 新人教版日语七年级全一册单词默写清单+答案
- HJ 636-2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
评论
0/150
提交评论