安徽省皖江联盟2026届数学高一上期末监测模拟试题含解析_第1页
安徽省皖江联盟2026届数学高一上期末监测模拟试题含解析_第2页
安徽省皖江联盟2026届数学高一上期末监测模拟试题含解析_第3页
安徽省皖江联盟2026届数学高一上期末监测模拟试题含解析_第4页
安徽省皖江联盟2026届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省皖江联盟2026届数学高一上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.242.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.3.已知α为第二象限角,,则cos2α=()A. B.C. D.4.已知,则().A. B.C. D.5.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.6.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}7.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,8.形如的函数因其函数图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数(且)有最小值,则当时的“囧函数”与函数的图象交点个数为A. B.C. D.9.在如图所示的多面体ABCDB1C1D1中,四边形ABCD、四边形BCC1B1、四边形CDC1C1都是边长为6的正方形,则此多面体ABCDB1C1D1的体积()A.72 B.144C.180 D.21610.下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________12.已知函数满足,若函数与图像的交点为,,,,,则__________13.已知直线与圆C:相交于A,B两点,则|AB|=____________14.已知函数则的值为_______15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______16.已知直线与直线的倾斜角分别为和,则直线与的交点坐标为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程18.已知的三个顶点.求:(1)边上高所在的直线方程;(2)边中线所在的直线方程.19.如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE平面ABC;(2)求证:B1C⊥平面BDE.20.若函数有两个零点,则实数的取值范围是_____.21.已知,,,.(1)求和的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.2、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可3、A【解析】,故选A.4、C【解析】将分子分母同除以,再将代入求解.【详解】.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.5、C【解析】根据所给关系图(Venn图),可知是求,由此可求得答案.【详解】根据题意可知,阴影部分表示的是,故,故选:C.6、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C7、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.8、C【解析】当时,,而有最小值,故.令,,其图像如图所示:共4个不同的交点,选C.点睛:考虑函数图像的交点的个数,关键在于函数图像的正确刻画,注意利用函数的奇偶性来简化图像的刻画过程.9、C【解析】把该几何体补成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=-,求之即可【详解】如图,把该几何体补成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=-=63-=180故选C【点睛】本题主要考查四棱锥体积的求法,考查化归与转化思想、数形结合思想,是中档题10、D【解析】函数定义域为当时,是减函数;当时,是增函数;故选D二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:12、4【解析】函数f(x)(x∈R)满足,∴f(x)的图象关于点(1,0)对称,而函数的图象也关于点(1,0)对称,∴函数与图像的交点也关于点(1,0)对称,∴,∴故答案为:4点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题要充分注意到两个函数的共性:关于同一点中心对称.13、6【解析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|.【详解】因为圆心C(3,1)到直线的距离,所以故答案为:614、【解析】首先计算,再求的值.【详解】,所以.故答案为:15、8【解析】根据“斜二测画法”原理还原出△ABC,利用边长对应关系计算原△ABC的面积即可详解】根据“斜二测画法”原理,还原出△ABC,如图所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面积为SBC×OA4×4=8故答案为8【点睛】本题考查了斜二测画法中原图和直观图面积的计算问题,是基础题16、【解析】因为直线与直线的倾斜角分别为和,所以,联立与可得,,直线与的交点坐标为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【点睛】本题主要考查了曲线轨迹方程的求法,以及直线与圆的位置关系的应用,其中解答中熟记直接法求轨迹的方法,以及合理使用直线与圆的位置关系是解答的关键,着重考查了推理与运算能力,以及转化思想的应用,属于基础题18、(1);(2).【解析】(1)利用相互垂直的直线斜率之间的关系可得高所在的直线的斜率,进而得出点斜式(2)利用中点坐标公式可得边的中点,利用两点式即可得出【详解】解:(1)又因为垂直,直线的方程为,即;(2)边中点E,中线的方程为,即.【点睛】本题考查了相互垂直的直线斜率之间的关系、中点坐标公式、两点式、一般式,考查了推理能力与计算能力,属于基础题19、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可.【小问1详解】设G是CC1的中点,连接,因为E为B1C的中点,所以,而,所以,因为平面ABC,平面ABC,所以平面ABC,同理可证平面ABC,因为平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小问2详解】设是的中点,连接,因为E为B1C的中点,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因为ABC是正三角形,是的中点,所以,因此平面,而平面,因此,而,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论