版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省虎林市高级中学高一上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与圆关于直线对称的圆的方程为()A. B.C. D.2.基本再生数R0与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天3.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.4.若:,则成立的一个充分不必要条件是()A. B.C. D.5.在中,满足,则这个三角形是()A.正三角形 B.等腰三角形C.锐角三角形 D.钝角三角形6.已知集合,,若,则的子集个数为A.14 B.15C.16 D.327.若,,,,则()A. B.C. D.8.对于函数定义域中任意的,,当时,总有①;②都成立,则满足条件的函数可以是()A. B.C. D.9.已知函数的定义域为,则函数的定义域为()A. B.C. D.10.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角终边经过点,则___________.12.已知在同一平面内,为锐角,则实数组成的集合为_________13.已知向量,且,则_______.14.已知,求________15.已知函数的零点为,不等式的最小整数解为,则__________16.不等式的解集是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线(1)直线l一定经过哪一点;(2)若直线l平分圆C,求k的值;(3)若直线l与圆C相交于A,B,求弦长的最小值及此时直线的方程18.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点19.已知集合A={x|},B={x||x-a|<2},其中a>0且a≠1(1)当a=2时,求A∪B及A∩B;(2)若集合C={x|logax<0}且C⊆B,求a的取值范围20.已知函数是定义在上的奇函数.(1)求实数的值,并求函数的值域;(2)判断函数的单调性(不需要说明理由),并解关于的不等式.21.如图,在四棱锥中,底面,,点在线段上,且.(Ⅰ)求证:平面;(Ⅱ)若,,,,求四棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.3、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A4、C【解析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.5、C【解析】由可知与符号相同,且均为正,则,即,即可判断选项【详解】由题,因为,所以与符号相同,由于在中,与不可能均为负,所以,,又因为,所以,即,所以,所以三角形是锐角三角形故选:C【点睛】本题考查判断三角形的形状,考查三角函数值的符号6、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C7、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.8、B【解析】根据函数在上是增函数,且是上凸函数判断.【详解】由当时,总有,得函数在上是增函数,由,得函数是上凸函数,在上是增函数是增函数,是下凸函数,故A错误;在上是增函数是增函数,是上凸函数,故B正确;在上是增函数,是下凸函数;故C错误;在上是减函数,故D错误.故选:B9、B【解析】抽象函数的定义域求解,要注意两点,一是定义域是x的取值范围;二是同一对应法则下,取值范围一致.【详解】的定义域为,,即,,解得:且,的定义域为.故选:.10、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据正切函数定义计算【详解】由题意故答案为:12、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.13、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.14、【解析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【详解】∵,∴,,,∴,∴故答案为:15、8【解析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.16、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)弦长的最小值为,此时直线的方程为【解析】(1)由可求出结果;(2)转化为圆心在直线上可求出结果;(3)当时,弦长最小,根据垂直关系求出直线斜率,根据点斜式求出直线的方程,利用勾股定理可求出最小弦长.【详解】(1)由得得,所以直线l一定经过点.(2)因为直线l平分圆C,所以圆心在直线上,所以,解得.(3)依题意可知当时,弦长最小,此时,所以,所以,即,圆心到直线的距离,所以.所以弦长的最小值为,此时直线的方程为.【点睛】关键点点睛:(3)中,将弦长最小转化为是解题关键.18、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.19、(1)A∪B={x|x>0},A∩B={x|2<x<4};(2){a|1<a≤2},【解析】(1)化简集合A,B,利用并集及交集的概念运算即得;(2)分a>1,0<a<1讨论,利用条件列出不等式即得.【小问1详解】∵A={x|2x>4}={x|x>2},B={x||x-a|<2}={x|a-2<x<a+2},∴当a=2时,B={x|0<x<4},所以A∪B={x|x>0},A∩B={x|2<x<4};【小问2详解】当a>1时,C={x|logax<0}={x|0<x<1},因为C⊆B,所以,解得-1≤a≤2,因为a>1,此时1<a≤2,当0<a<1时,C={x|logax<0}={x|x>1},此时不满足C⊆B,综上,a的取值范围为{a|1<a≤2}20、(1),的值域为;(2)在上单调递增,不等式的解集为.【解析】(1)根据定义域为R时,代入即可求得实数的值;根据函数单调性,结合指数函数的性质即可求得值域.(2)根据解析式判断函数的单调性;结合函数单调性即可解不等式.【详解】(1)由题意易知,,故,所以,,故函数的值域为(2)由(1)知,易知在上单调递增,且,故,所以不等式的解集为.【点睛】本题考查了奇函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程棉被供销合同范本
- 房产前期顾问合同范本
- 广告租赁标准合同范本
- 工程安全协议合同范本
- 委托外墙清洗合同范本
- 市场工作人员合同范本
- 执医注册聘用合同范本
- 房子材料购买合同范本
- 承包整厂拆除合同范本
- 移动通信基站综合防雷设计方案电子教案
- 招标人主体责任履行指引
- 财务审计工作程序及风险防范措施
- 健康管理师考试题库及答案题库大全
- 雨课堂学堂云在线《中国传统艺术-篆刻、书法、水墨画体验与欣赏(哈工 )》单元测试考核答案
- 公墓骨灰安葬协议书
- 2025国家粮食储备局考试真题与答案
- 2025年汽车后市场汽车维修行业技术更新换代趋势可行性研究报告
- 2024年一建网络图案例专题
- 2025深圳生物会考试卷及答案
- 水泥厂安全检查表
- 预制管桩防挤施工方案
评论
0/150
提交评论