2024人教版三年级数学上册第一单元《观察物体》每课时教案汇编(含四个教案)_第1页
2024人教版三年级数学上册第一单元《观察物体》每课时教案汇编(含四个教案)_第2页
2024人教版三年级数学上册第一单元《观察物体》每课时教案汇编(含四个教案)_第3页
2024人教版三年级数学上册第一单元《观察物体》每课时教案汇编(含四个教案)_第4页
2024人教版三年级数学上册第一单元《观察物体》每课时教案汇编(含四个教案)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一单元第1课时不同方向看单个物体

课程基本信息:

学科•版本数学-人教版授课班级授课教师

年级三年级学期单元一、观察物体

课题第1课时:小同方向有单个物体

【教学目标】

1.知识技能:结合具体情境,能辨认从不同方向(前、后、左、右)观察具体

物体(如玩具熊猫)所看到的形状。

能描述方向与所见形状的对应关系(如左右视角恃征)。

建立观察方位与所见形状的对应关系,发展空间观念。

2.素养能力:

空间观念:通过观察活动,发展方位与形状对应的空间感知能力。

语言表达:结合观察结果,清晰描述不同方向的物体特征。

【重点、难点】

重点:建立观察方位(前、后、左、右)与所见物体形状的对应关系。

难点:准确描述左右视角特征(如“左面看到熊猫右腿朝前”),理解圆柱侧面

可能显示长方形或正方形。

【教学流程】

一、复习导入

【设计意图】创设生活化情境激发兴趣,激活已有观察经验,自然引出核心问题。

1.出示熊猫玩具提问:“小明看到熊猫的脸,小红看到熊猫的背,为什么不同?”

2.指名4名学生分别站熊猫前、后、左、右描述所见

3.揭示课题:“今天学习从不同方向观察物体”(板书课题)

二、探究新知

学习任务一:实物观察,建立对应关系。

【设计意图】通过分组实物观察,亲身体验“方向不同所见不同”,建立方位与

形状的直观联系。

1.分组操作:

(1)4人一组围坐,熊猫放中间,明晰观察要求,用语言描述自己看到熊猫的

哪一部分,是什么的样子。

(2)独立完成记录单:“从—方向看到熊猫的—二

(3)4人轮流交换观察位置,说一说看到样子。

2.全班交流:

(1)对比前/后视角差异:”讨论为什么看到完全不同的部位?”

(2)辨析左/右视角:“小丽(左面)看到的熊猫腿朝哪边?为什么?”

完成小结:方向不同一看到的形状可能不同

3教学p2页第(1)题:

1.完成教材P2例1:下面左边的四幅图分别是谁看到的?为什么他们看到的样

子不同?

小N

(1)独立完成:观察“左边四幅图特点,结合右图说一说每幅图分别是谁看到

的?”

(2)组织语言,描述一下自己看到的样子。

2.关键讨论:“小丽(左)和小红(右)看到的熊猫有什么本质区别?”(腿的

朝向相反)

板书核心对应关系:前面一主要特征(脸)

后面一背部特征

左面-*右侧身体(右腿朝前)

右面一左侧身体(左腿朝前)

小结:辨认从不同方向(前、后、左、右)观察一个具体物体(如大熊猫玩具)

所看到的形状,理解观察结果因位置而异。

学习任务二:深化理解,观察方向和和物体特征的对应关系。

【设计意图】将建立的位置关系和生活中的实例现象对应起来,深化观察物体方

法,培养空间转换能力,培养语言表达能力。

1.借“盲人摸象”故事引导学生理解“局部观察导致片面认知”,渗透全面观

察的重要性,将实物经验抽象为空间思维。

教学步骤:

(1)播放《盲人摸象》故事片段,提问:“盲人们为什么争论?”

(2)学生观察盲人摸象结果,思考产生原因

(3)总结:众盲人只摸到象体的一部分,因而各执异说,他们的说法都是由脑

门,片面的。观察物体也是如此,在每一个方向只能看到这个方向的特征。

2.联系观察活动:提问为什么他们看到的样子不同?明确“我们观察熊猫时,每

个方向看到的也是它的哪一部分?”

得到结论:因为是从不同方向观察的。

1.从不同方向观察物体,看到的形状常常是不同的。

2.观察物体时,要根据观察的方向和物体的特征来判断。

3.小结:“观察物体时,每个方向只能看到该方向的局部特征,要全面认识需多

角度观察。”

学习任务三:分层练习

【设计意图】分层设计练习,从实物到抽象图形逐步深化空间对应关系,培养应

用意识。

1.基础练习:

辨认方向:如“小鸟看到的是哪幅图?"(选B)。

2.推理挑战:

空间路径:乐乐路过房子的顺序(③①②一选B)。

3.正方体数字推理(教材P2做一做):

小明对面是6(7—1=6),小红对面是4(7—3=4),小亮对面是3(7—4=3)。

4.生活应用:

展示茶壶照片,描述从正面、侧面看到的特征(渗透圆柱侧面可显长方形)。

三、课堂延伸

【设计意图】渗透相走位置概念,为后续学习铺垫,拓展空间思维。

思考:“如果熊猫转个身,现在从左面会看到什么?”

四、课堂总结

【设计意图】结构化梳理知识,强化核心概念。

学生总结:“今天我学会了从—方向看物体会看到—"

教师提炼:“观察物体就像拍照,位置决定画面!"

师:谁来说说这节课你收获了什么?学生谈谈本节课收获。

五、板书设计

观察物体(1)——不同方向看单个物体

f前:熊猫的脸(正对)

f后:熊猫的背部

一左:右侧身体(右腿朝前)

一右:左侧身体(左腿朝前)

核心:位置不同一看到的形状可能不同!

第一单元第2课时观察简单的立体图形

课程基本信息:

学科・版本数学-人教版授课班级授课教师

年级三年级学期单元一、观察物体

课题第2课时:观察简单的立体图形

【教学目标】

L知识技能:能辨认从不同方向(前、左/右、上)观察正方体、圆柱、球所见

的平面图形(正方形、长方形、圆)。

2.素养能力:

(1)建立观察方位与所见形状的对应关系,发展空间观念。

(2)归纳几何体观察特征(如“球所有方向都是圆”),发展儿何直观。

【重点、难点】

重点:掌握几何体与平面图形的对应关系。

难点:理解圆柱侧面可看到长方形或正方形两种情况。

【教学流程】

一、复习导入

【设计意图】回顾“观察要全面”的道理,引出对抽象几何体的观察需求,明确

本课学习对象和目标。

知识链接:搜集身边的学过的立体图形,说一说它们的名称?

小组交流:组内同学定照实物指一指,说一说,各种立体图形的特征。

迁移过渡:“上节课我们观察了具体的物体(如熊猫),知道了从不同方向看,

形状可能不同。今天,我们要来观察数学中的立体图形一一几何体(出示正方体、

圆柱、球模型或图片),看看从不同方向观察它们,会看到什么形状?”

揭示课题:板书课题:观察简单的立体图形。

二、探究新知

学习任务一:从不同方向观察长方体

【设计意图】通过亲身体验观察长方体,巩固“方向不同所见不同”的概念,为

观察其他几何体做铺垫,初步建立方向(前,左/右、上)与形状(长方形、正

方形)的对应C

1.情境设问:出示情境图(小明、小亮、小丽、小红观察长方体)。

提问:“下面右边的三幅图分别是谁看到的?他们分别是从哪个方向观察的?”

(小明-正面/前面;小亮-上面;小丽-左面;小纥-右面?此处需确认小红位置)

分组操作:4人一组,提供长方体实物。

活动要求:固定长方体的位置。确定观察的方向(前面、左面、右面、上面)。

把你看到的形状在小组内说一说(如:长方形、正方形)。

尝试解释为什么不同方向看到的形状不同。

全班交流:

汇报观察结果:前面(长方形)、左面(可能是长方形或正方形)、右面(同左面)、

上面(长方形)。重点说明看到的是平面图形(面)。

关键讨论:

“为什么小明(前面)和小亮(上面)看到的形状不同?"(观察方向不同,看

到的面不同)。

“小丽(左面)看到的和小红(右面)看到的形状可能一样吗?为什么?”(通

常一样,都是侧面;特殊长方体侧面是正方形则完全相同)。

初步小结:方向不同f看到的(平面)形状可能不同。长方体通常看到的是长

方形,也可能看到正方形(当侧面是正方形时)。

学习任务二:从不同方向观察正方体、球、圆柱

【设计意图】将实物观察抽象为图形辨认,通过想象、验证、归纳,重点探究正

方体、球、圆柱从三个基本方向(前、侧、±)观察的特征,特别是圆柱的两种

侧面情况,建立几何体与平面图形的稳定对应关系,发展空间观念和儿何直观。

正方体探究:

想象:“想一想,如果从正面、侧面(左/右)、上面观察一个正方体,分别会看

到什么形状?”(学生自由猜测:正方形)。

操作验证:学生利用正方体模型观察,确认结果。

归纳:板书呈现结论:正方体一从任何方向(前、左/右、上)观察一看到的都

是正方形。

球探究:

想象:“从正面、侧面、上面观察一个球,会看到什么形状?”(学生自由猜测)。

操作验证:学生利用球体模型观察,从各个方向看。

归纳:板书呈现结论:球一从任何方向(前、左/右、上)观察f看到的都是圆

形。

圆柱探究(重点突破难点):

想象:“从正面、侧面(左/右)、上面观察一个圆柱,分别会看到什么形状?”

(学生可能回答:上面/下面是圆,侧面是长方形)。

操作验证:

学生利用普通圆柱模型(高W底面直径)观察。

确认:从上面和下面观察f看到圆形。从正面、左面、右面观察f看到长方形。

关键讨论(难点);

出示结论:“观察不同的圆柱,也可能看到的是正方形。”

提问:“在什么情况下,从侧面(前/左/右)观察圆柱会看到正方形?”(引导

学生思考圆柱的特征:当圆柱的高度等于底面直经时)。

演示:出示一个特殊的圆柱(如扁罐头盒),展示其侧面观察结果是正方形。

归纳:板书呈现结论:

圆柱:

从上面或下面观察一看到圆形。

从正面、左面、右面观察:

通常看到长方形。

如果圆柱的高=底面直径,则看到正方形。

三、课堂练习

【设计意图】运用新知解决不同层次的问题,巩固几何体与视图的对应关系,特

别是对圆柱两种侧面情况的理解,培养应用能力和推理意识。

L基础应用(辨认视图):完成“填一填”练习(教材第2页“做一做”第1

题变式)。

题目:正方体相对两个面上的数,和是一

小明(正面)看到的数是(1)一对面是(6)o

小红(上面)看到的数是(6)对面是(1)?(需根据图中小红位置确认她看

到哪个面)

小亮(侧面,如右面)看到的数是(4)一对面是(3)?(需根据图中位置确认)

(原题图例需明确观察方向)

关键:利用“对面数和为7”的规则,结合观察方向判断看到的是哪个面,从而

推断其对面和看到的数字。

2.视图匹配:完成第2题。

题目:“下面右边的三幅图分别是在哪个位置看到的?把相应的序号填在括号

里。”(①③②)

关键:分析三个视图(如:天安门或类似建筑的前视图、侧视图、俯视图)的特

征,与观察位置(正面、侧面、上面)匹配。

推理应用(圆柱变式):完成第4题(或设计类似情境)。

题目:“我从上面看,看到的是图(④)。我从正面看,看到的是图(②)。"(假

设图②是长方形,图④是圆形)

关键:根据“上面看是圆”可确定是圆柱或球;“正面看是长方形”排除球,确

定是圆柱。强化对圆柱视图特征的掌握。

四、课堂延伸

【设计意图】体验从不同位置观察观察物体,看到的形状可能不同,可能相同的

多样情形。拓展空间思维。

在生活中找到实物规则的立体图形,进行细致观察,说清楚看到的形状和特点。

五、课堂总结

【设计意图】结构化梳理知识,强化核心概念。

L学生分享:“今天这节课,我们观察了哪些立体图形?从不同方向(前、测、

上)看,它们分别是什么形状?”

2.教师提炼(结合板书):

观察几何体,位置(方向)不同,看到的平面形状可能不同。

正方体;所有方向一正方形。

球:所有方向一圆形。

圆柱:

上/下面一圆形。

前/左/右面一通常长方形,特殊时(高=直径)正方形。

六、板书设计

观察简单的立体图形

方向不同f形状可能不同!

几何体与视图:

正方体:前、左/右、上一口(正方形)

球:前、左/右、上一O(圆形)

圆柱:

上、下一O(圆形)

前、左、右一通常口(长方形)

特殊:高=直径->口(正方形)

观察要全面

第一单元第3课时根据观察到的图形推测立体图形

课程基本信息:

学科-版本数学-人教版授课班级授课教师

年级三年级学期单元一、观察物体

课题第3课时:根据一个面推测&综合应用

【教学目标】

1.知识技能:结合具体情境,能根据看到的简单立体图形的一个面(正方形或圆

形)推测立体图形的瓦能形状。

2.素养能力:

(1)体验从不同位置观察物体,看到的形状可能不同,也可能相同。

(2)理解“一个面无法确定唯一立体图形”,发展推理意识。

【重点、难点】

重点:合理推测多种汇能性(如正方形一正方体/长方体/圆柱)。

难点:用数学语言解释推测依据%培养语言表达能力。

【教学流程】

一、复习导入

【设计意图】创设生活化情境激发兴趣,激活已有观察经验,自然引出核心问题。

故事引入:出示“盲人摸象”图片或简述故事。

提问:“盲人摸象的故事告诉我们什么道理?”(观察事物要全面细致,不能只

看到一部分就下结论)。

揭示课题:“今天学习如何根据一个面推测立体图形,探索其中的奥秘!”

二、探究新知

学习任务一:一个面是正方形推测物体可能的形状(实物操作)

【设计意图】紧扣“盲人摸象”情境,通过实物操作与对比分析,深刻理解“一

个面无法确定唯一立体图形”的推理思想。

活动L触摸猜测

每组准备不透明盒子(露出一个面:①正方形面盒子(内装正方体/长方体/圆柱)

②圆形面盒子(内装球/圆柱/圆锥)。

学生闭眼触摸露出面,猜测盒内物体并记录:

触摸的面我的猜测理由

O

活动2:开盒验证

开盒后对比结果,引发认知冲突:“为什么同一个口面可能是魔方(正方体)、

纸巾盒(长方体)或罐头(圆柱)?”

活动3:说一说,猜一猜。

我观察一个立体图形,看到的一个面是正方形。

(1)想一想,有哪些立体图形从某一方向看可能看到正方形?

正方体的各个面都是正方形,所以可能是正方体。

特殊的长方体有两个面是正方形,所以也可能是长方体。

特殊的圆柱(高度和上、下面的宽度相等),从正面或左面也能看到正方形,所

以也可能是圆柱。

学习任务二:一个面是长方形或圆推测物体可能的形状

【设计意图】在任务一活动的基础上,进一步深化观察面的形状,猜测可能立体

图形的知识拓展,通过动手实践操作,观察对照,深化视图与空间结构的对应关

系。

活动1:如果看到的-个面是,这个立体图形可能是什么?

1.小组合作:

(1)把准备好的各种立体图形从每个面仔细观察。

(2)再在小组内交流自己的发现,找出各种可能情况。

2.组织汇报:

(1)从这个长方体前面、上面能看到长方形,所以这个立体图形可能是长方体。

(2)从圆柱的侧面看到的也是长方形,所以这个立体图形也可能是圆柱。

追问:如果看到的是圆呢?(如果看到的是“圆”,这个立体图形可能是圆柱或

者球。)

小结:根据看到的立体图形的一个面推测立体图形的形状时,要考虑全面,符合

条件的立体图形可能有一个,也可能有多个。

三、课堂练习

【设计意图】分层设计练习,从实物到抽象图形逐步深化空间对应关系,培养应

用意识。

从直观到抽象分层巩固,强化空间推理能力。

1.基础练:

根据一个面(口或。)推测立体图形,画“选择可能答案。

完成“右边三幅图分别是谁看到的?”(方位与视图匹配)。

2.挑战练(拓展提升):

根据三视图(前、左、上)摆出几何体。

按时间顺序给小船由远到近的视图编号,解释“远小近大”规律。

四、课堂延伸

【设计意图】渗透相末位置概念,为后续学习铺垫,拓展空间思维。

用5个小正方体摆出从前面看是|的几何体。

操作步骤:

独立尝试摆法一小组互评一展示典型摆法。

规律发现:“只要摆成一层三列(前排3个,后排任意位置1个),前面看到的

都是I二□一!”

一呼应“我发现”结论。

五、课堂总结

【设计意图】结构化梳理知识,强化核心概念。

1.学生总结:

“我学会了根据一个面推测立体图形可能有多种情况,比如口对应。”

师:谁来说说这节课你收获了什么?学生谈谈本节课收获。

六、板书设计

观察物体(3)——不同方向看单个物体

1.推测依据:□->正方体/长方体/圆柱。一球/圆柱/圆锥

2.规律:一个面无法确定唯一立体图形•摆几何体:隐藏正方体不影响指定视图

3.核心思想:观察要全面,避免“盲人摸象”!

第一单元第4课时立体图形的展开和折叠

课程基本信息:

学科-版本数学-人教版授课班级授课教师

年级三年级学期单元一、观察物体

课题第4课时:立体图形的展开和折叠

【教学目标】

L知识技能:(1)通过剪、折操作,建立立体图形(长方体、正方体)与平面展

开图的转化能力。

(2)掌握长方体展开图相对面”形状相同且不相邻”的规律,判断简单展开图

能否折成长方体。

2.素养能力;(1)发展空间想象力,理解不同剪法得到展开图的多样性(“剪开

边数固定但图形可变”)0

(2)用数学语言描述剪开策略和特征(如“需剪开7条边”“141型展开图")o

【重点、难点】

重点:理解长方体展开图中面的对应关系(相对而位置规律)。识别展开图能否

折成正方体或长方体。

难点:想象不同剪法得到的展开图形状,理解“剪开边数相同,展开图形状可能

不同”。

【教学流程】

一、复习导入

【设计意图】激活旧知,从“观察物体形状”过渡到“立体图形展开”。

1.情境提问:教师展示长方体盲盒:”如何把盲盒拆开铺平?需要剪开几条边?”

学生回忆第1课时“方向不同,形状不同”,引出本课核心问题:立体图形如何

转化为平面图。

2.揭示课题:板书“立体图形的展开和折叠”。

二、探究新知

学习任务一:操作感知一一剪开边数的规律

【设计意图】通过实物操作,发现“开口类型决定剪开边数”。

例3:把长方体纸盒剪开,平铺在桌面上。(注意每个面都至少有一条边和其他

的面相连。)

活动一:需要剪开几条边,想一想,描一描。

1.分组操作:

提供三种纸盒:①两端开口、②一端开口、③无开口。

任务:各组尝试剪开纸盒铺平,记录需剪开的边数。

总结规律:

开口类型需剪开边数

两端开口(如抽屉)1条

一端开口(如盖子)4条

无开口(封闭盒子)7条

学习任务二:深化理解一一展开图中的面与面关系

【设计意图】建立展开图与立体图形面的对应关系,突破“相对面”规律。

活动二:剪一剪,说一说。

1.将剪开的图形看一看,有什么特点。

(1)都有三组相同的面,每组中的两个面都不相连。

(2)这两个同样的纸盒,剪开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论