版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市常州高级中学2026届高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.22.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.43.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,4.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.5.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列的通项公式为,则()A.12 B.14C.16 D.187.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.8.椭圆与双曲线有公共的焦点、,与在第一象限内交于点,是以线段为底边的等腰三角形,若椭圆的离心率的范围是,则双曲线的离心率取值范围是()A. B.C. D.9.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.10.椭圆C:的焦点在x轴上,其离心率为则椭圆C的长轴长为()A.2 B.C.4 D.811.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知等差数列中的、是函数的两个不同的极值点,则的值为()A. B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.14.如图,在四棱锥中,平面,底面是菱形,且,则异面直线与所成的角的余弦值为______,点到平面的距离等于______.15.圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________16.设函数为奇函数,当时,,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B.(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程19.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.20.(12分)在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.21.(12分)如图,四棱锥中,,,,平面.(1)在线段上是否存在一点使得平面?若存在,求出的位置;若不存在,请说明理由;(2)求四棱锥的体积.22.(10分)两人下棋,每局均无和棋且获胜的概率为,某一天这两个人要进行一场五局三胜的比赛,胜者赢得2700元奖金,(1)分别求以获胜、以获胜的概率;(2)若前两局双方战成,后因为其他要事而终止比赛,间,怎么分奖金才公平?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A2、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.3、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:4、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.5、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.6、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D7、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.8、B【解析】求得,可得出,设椭圆和双曲线的离心率分别为、,可得,由可求得的取值范围.【详解】设,设双曲线的实轴长为,因为与在第一象限内交于点,是以线段为底边的等腰三角形,则,由椭圆的定义可得,由双曲线的定义可得,所以,,则,设椭圆和双曲线的离心率分别为、,则,即,因,则,故.故选:B.9、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.10、C【解析】根据椭圆的离心率,即可求出,进而求出长轴长.【详解】由椭圆的性质可知,椭圆的离心率为,则,即所以椭圆C的长轴长为故选:C.【点睛】本题主要考查了椭圆的几何性质,属于基础题.11、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B12、C【解析】对求导,由题设及根与系数关系可得,再根据等差中项的性质求,最后应用对数运算求值即可.【详解】由题设,,由、是的两个不同的极值点,所以,又是等差数列,所以,即,故.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.14、①.②.【解析】因为底面是菱形,可得,则异面直线与所成的角和与所成的角相等,即可求得异面直线与所成的角的余弦值.在底面从点向作垂线,求证垂直平面,即可求得答案.【详解】根据题意画出其立体图形:如图底面是菱形,则异面直线与所成的角和直线与所成的角相等平面,平面又,底面是菱形即故:异面直线与所成的角的余弦值为:在底面从点向作垂线平面,平面,平面故是到平面的距离故答案为:,.【点睛】本题考查了求异面直线的夹角和点到面距离,解题关键是掌握将求异面直线夹角转化为共面直线夹角的解法,考查了分析能力和推理能力,属于基础题.15、2【解析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值【详解】如图,是圆锥轴截面,是一条母线,设轴截面顶角为,因为圆锥的高为1,底面半径为,所以,,所以,,设圆锥母线长为,则,截面的面积为,因为,所以时,故答案为:216、【解析】由奇函数的定义可得,代入解析式即可得解.【详解】函数为奇函数,当时,,所以.故答案为-1.【点睛】本题主要考查了奇函数的求值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故.选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.18、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或19、(1)的单调递增区间为,,单调递减区间为,(2)【解析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当f(1)≤1f(-1)≤1即在上恒成立所以,因此满足条件的的取值范围是20、(1)(2)【解析】(1)设点坐标为,根据两直线的斜率之积为得到方程,整理即可;(2)设,,,根据设、在椭圆上,则,再由,则,即可表示出直线、的方程,联立两直线方程,即可得到点的纵坐标,再根据弦长公式得到,令,则,最后利用基本不等式计算可得;【小问1详解】解:设点坐标为,定点,,直线与直线的斜率之积为,,【小问2详解】解:设,,,则,,所以又,所以,又即,则直线:,直线:,由,解得,即,所以令,则,所以因为,当且仅当即时取等号,所以的最大值为;21、(1)存在,为的中点,证明见解析;(2).【解析】(1)取的中点,的中点,连接,,,证明,由线面平行的判定定理即可求证;(2)先证明平面面,过点作于点,即可证明面,在中,利用面积公式求出即为四棱锥的高,再由棱锥的体积公式即可求解.【详解】(1)线段上存在点使得平面,为的中点.证明如下:如图取的中点,的中点,连接,,,因为,分别为,的中点,所以且因为且,所以,且,所以四边形为平行四边形,可得,因为面,面,所以平面;(2)过点作于点,因为平面,面,所以平面面,因为,面,平面面,所以面,因为,,所以,,所以,即,所以,即为四棱锥的高,所以.22、(1)以获胜、以获胜的概率分别是;(2)分给分别元,元.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业数据安全能力成熟度评估协议2025年服务版
- 企业内部培训师聘请合同协议(2025年条款)
- 植物销售代理协议书范本
- 装修设计招商合作协议书
- 金融投资协议书
- 商丘延迟上课协议书
- 泡沫灭火剂技术协议书
- 吊车合伙人协议书范本
- 关于某某植物新品种权的申请代理合同
- 2026年配药护士考试题集与答案
- 雨课堂在线学堂《走进心理学》期末考试复习题及答案作业考核答案
- 水下地形测量方案
- 实施指南(2025)《JBT 6740.3-2015 小型全封闭制冷电动机 压缩机用电流式起动继电器》
- 高校劳动教育课题申报书
- 建筑工程测量 第3版 课件 子单元8-4 工业厂房施工测量
- 工作量增加合同协议模板
- 选人用人方面存在的问题及改进措施
- 自我介绍礼仪课件
- 2025-2030工业窑炉烟气多污染物协同控制技术
- 泵车日常管理办法
- 骨科术后疼痛评估与护理查房
评论
0/150
提交评论