版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届内蒙古包头稀土高新区第二中学高一上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需将余弦曲线上所有的点A.向右平移个单位 B.向左平移个单位C向右平移个单位 D.向左平移个单位2.的值域是()A. B.C. D.3.函数的大致图像是()A. B.C. D.4.已知角的始边与轴非负半轴重合,终边过点,则()A.1 B.-1C. D.5.若两直线与平行,则它们之间的距离为A. B.C. D.6.若实数,满足,则的最小值是()A.18 B.9C.6 D.27.若关于x的不等式的解集为,则关于函数,下列说法不正确的是()A.在上单调递减 B.有2个零点,分别为1和3C.在上单调递增 D.最小值是8.已知函数对任意都有,则等于A.2或0 B.-2或0C.0 D.-2或29.已知函数,函数有三个零点,则取值范围是A. B.C. D.10.命题“”的否定是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知偶函数是区间上单调递增,则满足的取值集合是__________12.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围13.函数的最大值是____________.14.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________15.已知函数的部分图像如图所示,则_______________.16.已知集合,,且,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积18.已知正方体ABCD-的棱长为2.(1)求三棱锥的体积;(2)证明:.19.已知函数,(,,)图象的一部分如图所示.(1)求函数的解析式;(2)当时,求的值域.20.如图所示,设矩形的周长为cm,把沿折叠,折过去后交于点,设cm,cm(1)建立变量与之间的函数关系式,并写出函数的定义域;(2)求的最大面积以及此时的的值21.给出以下定义:设m为给定的实常数,若函数在其定义域内存在实数,使得成立,则称函数为“函数”.(1)判断函数是否为“函数”;(2)若函数为“函数”,求实数a的取值范围;(3)已知为“函数”,设.若对任意的,,当时,都有成立,求实数的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用函数的图象变换规律,得出结论【详解】把余弦曲线上所有的点向右平行移动个单位长度,可得函数的图象,故选C【点睛】本题主要考查函数的图象变换规律,属于基础题2、A【解析】先求得的范围,再由单调性求值域【详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.3、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.4、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.5、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,6、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”7、C【解析】根据二次函数性质逐项判断可得答案.【详解】方程的两个根是1和3,则函数图象的对称轴方程是,是开口向上的抛物线,A正确;C错误;函数的两个零点是1和3,因此B正确;又,,,即,为最小值,D正确故选:C.8、D【解析】分析:由条件可得,函数f(x)的图象关于直线x=对称,故f()等于函数的最值,从而得出结论详解:由题意可得,函数f(x)的图象关于直线x=对称,故f()=±2,故答案为±2点睛:本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.一般函数的对称轴为a,函数的对称中心为(a,0).9、D【解析】根据题意做出函数在定义域内的图像,将函数零点转化成函数与函数图像交点问题,结合图形即可求解.【详解】解:根据题意画出函数的图象,如图所示:函数有三个零点,等价于函数与函数有三个交点,当直线位于直线与直线之间时,符合题意,由图象可知:,,所以,故选:D.【点睛】根据函数零点的情况求参数有三种常用方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.10、D【解析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为为偶函数,所以等价于,又是区间上单调递增,所以.解得.答案为:.点睛:本题属于对函数单调性应用的考查,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.12、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是13、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:14、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.15、【解析】首先确定函数的解析式,然后求解的值即可.【详解】由题意可得:,当时,,令可得:,据此有:.故答案为:.【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.16、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见详解;(2)见详解;(3)【解析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.(2)证明由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,在△AEC中,FG∥AE,∴AE∥平面BFD.(3)∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中点,F是CE中点,∴FG∥AE且FG=AE=1.∴Rt△BCE中,BF=CE=CF=,∴S△CFB=××=1.∴VC-BGF=VG-BCF=·S△CFB·FG=.18、(1)(2)证明见解析【解析】(1)将问题转化为求即可;(2)根据线面垂直证明线线垂直.【小问1详解】在正方体ABCD-中,易知⊥平面ABD,∴.【小问2详解】证明:在正方体中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴19、(1),(2)【解析】(1)根据函数的最大值得到,根据周期得到,根据得到,从而得到.(2)首先根据题意得到,再根据,利用正弦函数图象性质求解值域即可.【详解】(1)因为,,所以.又因为,所以,即,.因为,,,所以,又因为,所以,.(2).因为,所以,所以,即,故函数的值域为.20、(1),定义域(2),的最大面积为【解析】(1)由题意可得,再由可求出的取值范围,(2)设,在直角三角形ADP中利用勾股定理可得,从而可求得,化简后利用基本不等式可求得结果【小问1详解】因为,,矩形ABCD的周长为20cm,所以,因为,所以,解得.所以,定义域为【小问2详解】因为ABCD是矩形,所以有,因为是沿折起所得,所以有,,因此有,,所以≌,因此,设.而ABCD是矩形,所以,因此在直角三角形ADP中,有,所以,化简得,当且仅当时取等号,即时,的最大面积为21、(1)是(2)(3)【解析】(1)根据定义判得时,满足,进而判断;(2)根据题意得,,进而整理得存在实数使得,再结合和讨论求解即可;(3)由题知,故不妨设,进而得,故构造函数,则函数在上单调递增,在作出函数图像,数形结合求解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南生物机电职业技术学院高职单招职业适应性测试参考题库带答案解析
- 未来五年学校体育教育活动市场需求变化趋势与商业创新机遇分析研究报告
- 未来五年文化投资与资产管理企业ESG实践与创新战略分析研究报告
- 未来五年展览工程企业县域市场拓展与下沉战略分析研究报告
- 2026年江西制造职业技术学院高职单招职业适应性测试备考题库带答案解析
- 未来五年仔猪补料槽企业县域市场拓展与下沉战略分析研究报告
- 未来五年增压泵(石油钻采专用)企业数字化转型与智慧升级战略分析研究报告
- 2026年眉山药科职业学院高职单招职业适应性测试备考题库带答案解析
- 2025-2030农药行业技术革新供需研究市场机会规划
- 2025-2030农副产品电商销售模式创新与冷链物流体系建设方案研究
- 水电站建筑物课程设计
- 个人借款合同个人借款协议
- 生物科技股份有限公司GMP质量手册(完整版)资料
- 儿童行为量表(CBCL)(可打印)
- 地貌学与第四纪地质学总结
- 2023年德语专业四级考试真题
- GB/T 36713-2018能源管理体系能源基准和能源绩效参数
- 温度仪表基础知识课件
- OnyxWorks使用注意说明
- DB53∕T 1034-2021 公路隧道隐蔽工程无损检测技术规程
- DB32∕T 2349-2013 杨树一元立木材积表
评论
0/150
提交评论