版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽合肥寿春中学2026届高二上数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.40422.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.3.若向量则()A. B.3C. D.4.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或5.已知向量,满足条件,则的值为()A.1 B.C.2 D.6.已知是虚数单位,若,则复数z的虚部为()A.3 B.-3iC.-3 D.3i7.如图是函数的导数的图象,则下面判断正确的是()A.在内是增函数B.在内是增函数C.在时取得极大值D.在时取得极小值8.已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A. B.C.2 D.9.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm),那么该壶的容量约为()A.100 B.C.300 D.40010.抛物线的焦点到准线的距离为()A. B.C. D.11.已知向量,,若与共线,则实数值为()A. B.C.1 D.212.若实数满足,则点不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线左、右焦点分别为,,点P是双曲线左支上一点且,则______14.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A、B的距离之比为定值(且)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆,在平面直角坐标系中,,,点满足,则点P的轨迹方程为__________.(答案写成标准方程),的最小值为___________.15.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)16.已知实数x,y满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,矩形ABCD,点E,F分别是线段AB,CD的中点,,,以EF为轴,将正方形AEFD翻折至与平面EBCF垂直的位置处.请按图中所给的方法建立空间直角坐标系,然后用空间向量坐标法完成下列问题(1)求证:直线平面;(2)求直线与平面所成角的正弦值.18.(12分)在一个盒子中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从盒子中随机取出一个球,该球的编号记为,将球放回盒子中,然后再从盒子中随机取出一个球,该球的编号记为.(1)写出试验的样本空间;(2)求“”的概率.19.(12分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.20.(12分)已知数列的前n项和为,且,,数列满足:,,,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)若不等式对任意恒成立,求实数k的取值范围21.(12分)在中,,,为边上一点,且(1)求;(2)若,求22.(10分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.2、A【解析】由直线斜率与方向向量的关系算出斜率,然后可得.【详解】记直线的倾斜角为,由题知,又,所以,即.故选:A3、D【解析】先求得,然后根据空间向量模的坐标运算求得【详解】由于向量,,所以.故故选:D4、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同5、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.6、C【解析】由复数的除法运算可得答案.【详解】由题得,所以复数z的虚部为-3.故选:C.7、B【解析】根据图象判断的单调性,由此求得的极值点,进而确定正确选项.【详解】由图可知,在区间上,单调递减;在区间上,单调递增.所以不是的极值点,是的极大值点.所以ACD选项错误,B选项正确.故选:B8、C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.9、B【解析】根据圆台的体积等于两个圆锥的体积之差,即可求出【详解】设大圆锥的高为,所以,解得故故选:B【点睛】本题主要考查圆台体积的求法以及数学在生活中的应用,属于基础题10、C【解析】根据抛物线方程求出焦点坐标与准线方程,即可得解;【详解】解:因为抛物线方程为,所以焦点坐标为,准线的方程为,所以焦点到准线的距离为;故选:C11、D【解析】根据空间向量共线有,,结合向量的坐标即可求的值.【详解】由题设,有,,则,可得.故选:D12、B【解析】作出给定的不等式组表示的平面区域,观察图形即可得解.【详解】因实数满足,作出不等式组表示的平面区域,如图中阴影部分,观察图形知,阴影区域不过第二象限,即点不可能落在第二象限.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据双曲线方程求出,再根据双曲线的定义可知,即可得到、,再由正弦定理计算可得;【详解】解:因为双曲线为,所以、,因为点P是双曲线左支上一点且,所以,所以,,在中,由正弦定理可得,所以;故答案为:14、①.②.【解析】设点P坐标,然后用直接法可求;根据轨迹方程和数量积的坐标表示对化简,结合轨迹方程可得x的范围,然后可解.【详解】设P点坐标为,则由,得,化简得,即.因为,所以因为点P在圆上,故所以,故的最小值为.故答案为:,15、36【解析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有种分组方法,再将分好的3组对应3个场馆,有种方法,则共有种分配方案.故答案为:3616、【解析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以为坐标原点,建立空间直角坐标系,写出对应向量的坐标,根据向量垂直,即可证明线面垂直;(2)根据(1)中所求平面的法向量,利用向量法,即可容易求得结果.【小问1详解】矩形ABCD中,点E,F分别是线段AB,CD的中点,∴,∴翻折后∵平面平面,且面,面,故可得面,又面,∴,故两两垂直,∴分别以,,为,,轴建立如图所示空间直角坐标系:∵,则,,,,,,∵,,∴,∴,,又面,∴平面.【小问2详解】由(1)知,平面的法向量为,又向量,则向量与法向量为所成角的余角即是直线与平面所成角,设直线与平面所成角为,向量与法向量为所成角为,则.故直线与平面所成角正弦值为.18、(1)见解析(2)【解析】(1)利用列举法列出试验的样本空间,(2)由(1)可知共有16种情况,其中和为5的有4种,然后利用古典概型的概率公式求解即可【小问1详解】由题意可知试验的样本空间为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)【小问2详解】由(1)可知共有16种等可能情况,其中满足的有:(1,4),(2,3),(3,2),(4,1),4种,所以“”的概率为19、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求最值;(Ⅱ)连接交于点,则为的中点,可得为中点,易证得,得平面,所以,进而可证得,,所以平面EFM,因为平面,从而得证.【详解】(Ⅰ)由题可知,,.所以(当且仅当,即时等号成立)所以当时,最大,最大值为.(Ⅱ)连接交于点,则为的中点,因为平面,平面平面,所以,所以为中点.连接,因为为中点,所以,因为,所以.因为平面,平面,所以,因为,所以平面,又平面,所以.同理,因为,所以平面EFM,因为平面,所以平面平面B1D1M.20、(1),;(2);(3).【解析】(1)由可得数列是等比数列,即可求得,由得数列是等差数列,即可求得.(2)由(1)可得,再利用错位相减法求和即得.(3)将问题等价转化为对任意恒成立,构造数列并判断其单调性,即可求解作答.【小问1详解】数列的前项和为,,,当时,,则,而当时,,即得,因此,数列是以1为首项,3为公比的等比数列,则,数列中,,,则数列是等差数列,而,,即有公差,则,所以数列,的通项公式分别是:,.【小问2详解】由(1)知,,则,则有,两式相减得:,从而得,所以数列的前n项和.【小问3详解】由(1)知,,依题意得对任意恒成立,设,则,当,,为单调递减数列,当,,为单调递增数列,显然有,则当时,取得最大值,即最大值是,因此,,所以实数k取值范围是.【点睛】思路点睛:一般地,如果数列是等差数列,是等比数列,求数列的前n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 慢阻肺急性发作的成本控制与预防策略优化
- 可视化地图数据加工合同协议
- 慢阻肺急性加重前预警随访策略
- 车辆调度合作意向协议书
- 学业规划咨询合同
- 2026年波士顿矩阵销售渠道协议
- 幼儿园安全防护和检查制度6篇
- 2026年全国中小学“学宪法、讲宪法”知识竞赛测试题库及答案
- 慢病管理沟通案例分享
- 慢病管理信息化建设与数据安全
- 2026年云南省高二物理学业水平合格考试卷试题(含答案详解)
- 贵州安创数智科技有限公司招聘笔试题库2026
- 机械设备入股合同范本
- 2024-2025学年河南省郑州市高新区七年级(上)期末数学试卷
- 商场服务合同范本
- 江苏省无锡市澄宜六校联盟2025-2026学年高三上学期12月学情调研生物试题(含答案)
- 2026年济源职业技术学院单招综合素质考试题库附答案详解
- 2025年临床流行病学试题及答案
- 广东省广州市白云区2024-2025学年四年级上册期末考试数学试卷(含答案)
- 2025年度公司员工个人年终工作总结汇报
- 【生 物】2025-2026学年人教版生物八年级上册复习提纲
评论
0/150
提交评论