2026届山东省滨州市三校联考数学高一上期末检测模拟试题含解析_第1页
2026届山东省滨州市三校联考数学高一上期末检测模拟试题含解析_第2页
2026届山东省滨州市三校联考数学高一上期末检测模拟试题含解析_第3页
2026届山东省滨州市三校联考数学高一上期末检测模拟试题含解析_第4页
2026届山东省滨州市三校联考数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省滨州市三校联考数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则sin=A. B.C. D.2.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.3.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]4.若直线与圆相切,则的值是()A.-2或12 B.2或-12C.-2或-12 D.2或125.已知角终边上一点,则A. B.C. D.6.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积是()A.12512πC.1256π7.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,8.已知,若不等式恒成立,则的最大值为()A.13 B.14C.15 D.169.函数在区间上的简图是()A. B.C. D.10.直线xa2-A.|b| B.-C.b2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知平面和直线,给出条件:①;②;③;④;⑤(1)当满足条件_________时,有;(2)当满足条件________时,有.(填所选条件的序号)12.在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.13.已知函数是偶函数,则实数的值是__________14.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.15.函数的最小值是________.16.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知以点为圆心的圆与直线:相切,过点的直线与圆相交于,两点,是的中点,.(1)求圆的标准方程;(2)求直线的方程.18.在平面直角坐标系中,已知角的顶点为坐标原点,始边为轴的正半轴,终边过点(1)求的值;(2)求的值19.已知函数,.(1)对任意的,恒成立,求实数k的取值范围;(2)设,证明:有且只有一个零点,且.20.在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量(单位:百万个)与培养时间(单位:小时)的关系为:根据表格中的数据画出散点图如下:为了描述从第小时开始细菌数量随时间变化的关系,现有以下三种模型供选择:①,②,③(1)选出你认为最符合实际的函数模型,并说明理由;(2)利用和这两组数据求出你选择的函数模型的解析式,并预测从第小时开始,至少再经过多少个小时,细菌数量达到百万个21.已知角的终边过点,且.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围2、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B3、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.4、C【解析】解方程即得解.【详解】解:由题得圆的圆心坐标为半径为1,所以或.故选:C5、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题6、C【解析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC的中点,即可求出球的半径,代入体积公式即可得解.【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC上,且球的半径为AC长度的一半,即r=12AC=故选:C【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.7、D【解析】直接利用集合运算法则得出结果【详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性8、D【解析】用分离参数法转化为恒成立,只需,再利用基本不等式求出的最小值即可.【详解】因为,所以,所以恒成立,只需因为,所以,当且仅当时,即时取等号.所以.即的最大值为16.故选:D9、B【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案.【详解】当时,,排除A、D;当时,,排除C.故选:B.10、B【解析】由题意,令x=0,则-yb2=1,即y=-b2二、填空题:本大题共6小题,每小题5分,共30分。11、(1).③⑤;(2).②⑤【解析】若m⊂α,α∥β,则m∥β;若m⊥α,α∥β,则m⊥β故答案为(1)③⑤(2)②⑤考点:本题主要考查直线与平面垂直的位置关系点评:熟练掌握直线与平面平行、垂直的判定与性质,基础题12、【解析】根据二分法,取区间中点值,而,,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间13、1【解析】函数是偶函数,,即,解得,故答案为.【方法点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性14、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.15、2【解析】直接利用基本不等式即可得出答案.【详解】解:因为,所以,当且仅当,即时,取等号,所以函数的最小值为2.故答案为:2.16、【解析】先求得,然后利用列举法求得正确答案.【详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)求出点A与直线的距离即可得出圆的半径,由圆心与半径写出圆的标准方程;(2)分斜率存在与不存在两种情况讨论,当斜率存在时,点斜式设出直线方程,由弦长及半径可求出弦心距,再利用点到直线距离即可求解,当斜率不存在时验证是否满足条件即可.【详解】(1)设圆的半径为,因为圆与直线:相切,,∴圆的方程为.(2)①当直线与轴垂直时,易知符合题意;②当直线与轴不垂直时,设直线的方程为,即.由题意,,,则由得,∴直线为:,故直线的方程为或.18、(1)(2)当时,;当时,【解析】(1)根据三角函数的定义及诱导公式、同角三角函数基本关系化简求解;(2)分,分别由定义求出三角函数值求解即可.【小问1详解】由角的终边过点,得,所以【小问2详解】当时,,所以当时,,所以综上,当时,;当时,19、(1);(2)证明见解析.【解析】(1)利用的单调性以及对数函数的单调性,即可求出的范围(2)对进行分类讨论,分为:和,利用零点存在定理和数形结合进行分析,即可求解【详解】解:(1)因为是增函数,是减函数,所以在上单调递增.所以的最小值为,所以,解得,所以实数k的取值范围是.(2)函数的图象在上连续不断.①当时,因为与在上单调递增,所以在上单调递增.因为,,所以.根据函数零点存在定理,存在,使得.所以在上有且只有一个零点.②当时,因为单调递增,所以,因为.所以.所以在上没有零点.综上:有且只有一个零点.因为,即,所以,.因为在上单调递减,所以,所以.【点睛】关键点睛:对进行分类讨论时,①当时,因为与在上单调递增,再结合零点存在定理,即可求解;②当时,恒成立,所以,在上没有零点;最后利用,得到,然后化简可求解。本题考查函数的性质,函数的零点等知识;考查学生运算求解,推理论证的能力;考查数形结合,分类与整合,函数与方程,化归与转化的数学思想,属于难题20、(1),理由见解析;(2),至少再经过小时,细菌数量达到百万个【解析】(1)分析可知,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小.对比三个函数模型可得结论;(2)将所选的两点坐标代入函数解析式,求出参数值,可得出函数模型的解析式,再由,解该不等式即可得出结论.【小问1详解】解:依题意,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小因为函数的定义域为,时无意义;函数随着自变量的增加,函数值的增长速度变大函数可以同时符合上述条件,所以应该选择函数【小问2详解】解:依

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论