版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省佛山市南海一中高一数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知则的值为()A. B.2C.7 D.52.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度4.已知向量,,则向量与的夹角为()A. B.C. D.5.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}6.函数的单调递减区间是A. B.C. D.7.下列函数中,最小正周期是且是奇函数的是()A. B.C. D.8.已知函数,则是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数9.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.10.设函数满足,当时,,则()A.0 B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.向量与,则向量在方向上的投影为______12.在四边形ABCD中,若,且,则的面积为_______.13.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______14.函数的定义域是______________.15.已知集合,,则___________.16.已知函数,则使函数有零点的实数的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.18.已知函数(1)求的单调递增区间;(2)若不等式在上恒成立,求实数的取值范围.19.已知圆经过,两点,且圆心在直线:上.(Ⅰ)求圆的方程;(Ⅱ)若点在直线:上,过点作圆的一条切线,为切点,求切线长的最小值;(Ⅲ)已知点为,若在直线:上存在定点(不同于点),满足对于圆上任意一点,都有为一定值,求所有满足条件点的坐标.20.在中,设角的对边分别为,已知.(1)求角的大小;(2)若,求周长的取值范围.21.已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,关于的方程有实数根,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先算,再求【详解】,故选:B2、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C3、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A4、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:5、A【解析】根据并集定义求解即可.【详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:A∪B={1,2,3,4},选项A正确,选项BCD错误.故选:A.6、A【解析】令,则有或,在上的减区间为,故在上的减区间为,选A7、A【解析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】A选项,的最小正周期是,且是奇函数,A正确.B选项,的最小正周期是,且是奇函数,B错误.C选项,的最小正周期为,且是奇函数,C错误.D选项,的最小正周期是,且是偶函数,D错误.故选:A8、B【解析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论【详解】∵,∴=,∵,且T=,∴是最小正周期为偶函数,故选B.【点睛】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题9、D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.10、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】在方向上的投影为考点:向量的投影12、【解析】由向量的加减运算可得四边形为平行四边形,再由条件可得四边形为边长为4的菱形,由三角形的面积公式计算可得所求值【详解】在四边形中,,即为,即,可得四边形为平行四边形,又,可得四边形为边长为4的菱形,则的面积为正的面积,即为,故答案为:13、【解析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【点睛】本题考查方程根的个数,数形结合是解决问题的关键,属基础题14、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.15、【解析】根据并集的定义可得答案.【详解】,,.故答案为:.16、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.18、(1)(2)【解析】(1)由三角恒等变换化简,利用正弦型函数的单调性求解;(2)分离参数转化为恒成立,求出的最大值即可得解.【小问1详解】由,的单调递增区间为.【小问2详解】因为不等式在上恒成立,所以,,,,即19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根据题意,设出圆的标准方程,代入条件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小时,垂直于直线,据此可得结论;(Ⅲ)设,,列出相应等式化简,再利用点的任意性,列出方程组求解即可.【详解】(Ⅰ)设圆的方程为,根据题意有,解得,所以圆的方程为;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而当垂直于直线时,最小,此时,所以的最小值为;(Ⅲ)设,满足,假设的定值为,则,化简得,因为对于圆上任意一点上式都成立,所以,解得(舍),因此满足条件点的坐标为.【点睛】本题涉及圆与直线的综合应用,利用了数形结合等思想,考查了学生分析解决问题的能力,综合性较强.在答题时要注意:①线外一点到线上一点的距离中,垂线段最短;②解决任意性问题的关键是令含参部分的系数为0,最常见的就是过定点问题.20、(1);(2)【解析】(1)由三角函数的平方关系及余弦定理即可得出(2)利用正弦定理、两角和差的正弦公式、三角函数的单调性转化为三角函数求值域即可得出.【详解】(1)由题意知,即,由正弦定理得由余弦定理得,又.(2),则的周长.,,周长的取值范围是.【点睛】本题主要考查了三角函数的平方关系,正余弦定理,两角和差的正弦公式,三角函数的单调性,属于中档题.21、(1),(2)【解析】(1)由最大值和最小值求得,的值,由以及可得的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62083:2025 FR Medical device software - Requirements for the safety of radiotherapy treatment planning systems
- 2025年高职计算机网络技术(网络安全防护)试题及答案
- 2025年大学运动生理学(肌肉力量训练)试题及答案
- 励志实拍大学生自我介绍开学个人简历
- 工程机械培训课件
- 工程技术类培训课件
- 工程土建类培训课件
- 2026年安全生产隐患排查治理安全培训管理考试题库及答案
- 2026年工程建设领关于开展工程建设领域突出问题专项治理工作
- 成本效益分析与优化策略
- GB/T 8642-2025热喷涂抗拉结合强度的测定
- 贵州省贵阳市2024-2025学年高一上学期期末监测物理试卷(含解析)
- 平昌县2025年下半年公开考调公务员(参照管理工作人员)备考题库附答案
- 2025年华中科技大学职工队伍公开招聘备考题库附答案详解
- 2025年全国自考管理学原理真题及答案
- 期末冲刺备考总动员校长在教师会议上讲话:五字诀精实盯严稳
- 2025年度急诊科护士长述职报告
- 2026年郑州电力高等专科学校单招职业技能考试模拟测试卷附答案解析
- 湖北省武汉市洪山区2024-2025学年五年级上学期期末数学试卷
- 装修工程施工方案简单版
- 七年级历史下册期末模拟试卷题库试题附答案完整版
评论
0/150
提交评论