版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学年湖南省邵阳市隆回县2026届高一上数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,求().A.6 B.7C.8 D.92.已知点,直线,则点A到直线l的距离为()A.1 B.2C. D.3.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.4.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右5.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角6.如图所示,正方体中,分别为棱的中点,则在平面内与平面平行的直线A.不存在 B.有1条C.有2条 D.有无数条7.在下列图象中,函数的图象可能是A. B.C. D.8.设,,,则下列正确的是()A. B.C. D.9.函数的图象的一个对称中心是()A B.C. D.10.且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角二、填空题:本大题共6小题,每小题5分,共30分。11.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.12.设函数,若函数满足对,都有,则实数的取值范围是_______.13.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为______14.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮船航行模式之先导,如图,某桨轮船的轮子的半径为,他以的角速度逆时针旋转,轮子外边沿有一点P,点P到船底的距离是H(单位:m),轮子旋转时间为t(单位:s).当时,点P在轮子的最高处.(1)当点P第一次入水时,__________;(2)当时,___________.15.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________16.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简;(2)若是第三象限角,且,求的值.18.化简下列各式:(1);(2).19.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?20.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,(1)证明:(2)若,求四棱锥的体积21.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数3869人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为100万元,每生产万件,需另投入流动成本为万元,在年产量不足19万件时,(万元),在年产量大于或等于19万件时,(万元),每件产品售价为25元,通过市场分析,生产的医用防护用品当年能全部售完(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,某厂家在这一商品的生产中所获利润最大?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用向量的加法规则求解的坐标,结合模长公式可得.【详解】因为,所以,所以.故选:B.【点睛】本题主要考查平面向量的坐标运算,明确向量的坐标运算规则是求解的关键,侧重考查数学运算的核心素养.2、C【解析】利用点到直线的距离公式计算即可.【详解】解:点,直线,则点A到直线l的距离,故选:C.【点睛】点到直线的距离.3、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.4、C【解析】因为,由此可得结果.【详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.5、D【解析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.6、D【解析】根据已知可得平面与平面相交,两平面必有唯一的交线,则在平面内与交线平行的直线都与平面平行,即可得出结论.【详解】平面与平面有公共点,由公理3知平面与平面必有过的交线,在平面内与平行的直线有无数条,且它们都不在平面内,由线面平行的判定定理可知它们都与平面平行.故选:D.【点睛】本题考查平面的基本性质、线面平行的判定,熟练掌握公理、定理是解题的关键,属于基础题.7、C【解析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【点睛】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.8、D【解析】计算得到,,,得到答案.【详解】,,.故.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.9、B【解析】利用正弦函数的对称性质可知,,从而可得函数的图象的对称中心为,再赋值即可得答案【详解】令,,解得:,.所以函数的图象的对称中心为,.当时,就是函数的图象的一个对称中心,故选:B.10、D【解析】直接由三角函数的象限符号取交集得答案.【详解】由,可得为第二或第四象限角;由,可得为第一、第四及轴非负半轴上的角∴取交集可得,是第四象限角故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题12、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.13、【解析】在圆C2上任取一点(x,y),则此点关于直线对称点(y+1,x-1)在圆C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案为考点:点关于直线的对称点的求法点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线的对称点(y+1,x-1)在圆C1上14、①.②.##【解析】算出点从最高点到第一次入水的圆心角,即可求出对应时间;由题意求出关于的表达式,代值运算即可求出对应.【详解】如图所示,当第一次入水时到达点,由几何关系知,又圆的半径为3,故,此时轮子旋转的圆心角为:,故;由题可知,即,当时,.故答案为:;15、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用16、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据诱导公式化简即可得答案;(2)根据诱导公式,结合已知条件得,再根据同角三角函数关系求值即可.【详解】(1).(2)∵,∴,又是第三象限角,∴,故.【点睛】本题考查诱导公式化简求值,考查运算能力,基础题.18、(1)0(2)1【解析】(1)由诱导公式化简计算;(2)由诱导公式化简即可得解【小问1详解】;【小问2详解】19、(1)(2)(3)4人【解析】(1)根据频率和为1,求出的值;(2)根据频率分布直方图,计算平均数即可(3)根据分层抽样方法特点,计算出总人数以及应抽取的人数比即可;【小问1详解】解:因为直方图中的各个矩形的面积之和为1,所以有,解得;【小问2详解】解:根据频率分布直方图,计算平均数为【小问3详解】解:由直方图知,三个区域内的学生总数为人,其中身高在内的学生人数为人,所以从身高在范围内抽取的学生人数为人;20、(1)证明见解析;(2)8.【解析】(1)由平行四边形的性质及勾股定理可得,再由面面垂直的性质有BC⊥面PCD,根据线面垂直的性质即可证结论.(2)取CD的中点E,连接PE,易得,由面面垂直的性质有PE⊥底面ABCD,即PE是四棱锥的高,应用棱锥的体积公式求体积即可.【小问1详解】在平行四边形ABCD中因为,即,所以因为面PCD⊥面ABCD,且面PCD面ABCD=CD,面PCD,所以BC⊥面PCD,又PD平面PCD,所以【小问2详解】如图,取CD的中点E,连接PE,因为,所以,又面PCD⊥面ABCD,面PCD面ABCD=CD,面PCD,所以PE⊥底面ABCD因为,,则,故21、(1);(2)当生产的医
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年众包配送合作协议书模板
- 养生保健科室养生保健计划
- 慢病预防的公共卫生应急联动机制
- 行人交通安全责任协议
- 配送看板系统租赁协议
- 电子数据交换合作运营协议
- 慢病防控政策执行偏差的伦理反思与法律纠正
- 慢病防控中心理干预的资源配置政策
- 慢病管理区块链档案的长期追踪技术
- 慢病管理中的家庭支持体系
- 中国临床肿瘤学会(csco)胃癌诊疗指南2025
- 江苏省徐州市2025-2026学年高二上学期期中考试信息技术试卷(含答案)
- 高压氧培训课件
- 民用航空安全保卫审计工作指导手册
- 2025福建德化闽投抽水蓄能有限公司社会招聘4人备考题库附答案
- 2025水土流失动态监测技术指南
- 客户需求对接管理规范
- 垃圾分类与处理专员面试题集
- 往来核算岗位实训
- 2025年医保政策知识培训考试试题库及答案
- 学堂在线 雨课堂 学堂云 人工智能 章节测试答案
评论
0/150
提交评论