版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DesignPatternsforAgenticAI:
BuildingScalable,Event-DrivenSystems
May1,2025
Moderatedby:ErikCostlow,InfoQEditor
TYLERJEWELL
CEO@Akka
RICHARDLI
FounderofAmorphous
Data
Today’sagenda
01LLMs,agents,agenticsystems
02Systemengineeringchallenges
03Systemengineeringpractices
04Resourcesandnextsteps
Q&A
05
2
Pollquestion
3
Agenticisreal,but…thereisalottolearn
Visitakka.io
Thebasics:
WhatisagenticAI?
Userstories:
AgenticAIcustomerstories
Webinar:
AblueprintforagenticAIservices
Samples
Production-readyagents
Blogs:
AgenticAIblogs
News:
AkkalaunchesnewdeploymentoptionsforagenticAIatscale
GetStarted:
Developyourownagenticapp
4
Agentsandagenticsystemsare
distributedsystems,poweredbyAI
…thatmustdeliverreliableoutcomes
…whiledependinguponunreliableLLMs.
5
AIAgency
Capacitytomakemeaningfromyourenvironment
LowAgency
RPA
→lowautonomy
→coded
decisions
→humancontrol
Agents
→partialautonomy
→LLMadvice
→humanguidance
Agentic
→highautonomy
→distributed
decisions
→group
coordination
Humans
HighAgency
adaptive
static
reactive
proactive
tasks
goals
supervised
autonomous
“Abiggapexistsbetweencurrent
LLM-basedassistantsandfull-fledgedAIagents,butthisgapwillcloseas
welearnhowtobuild,governandtrustagenticAIsolutions.”
–Gartner
economicproductivity-
cost
App
Ecosystem
Cloud-nativeApplications
+
AgenticAIServices
AparadigmshifttoAI-fueledappecosystems
AIagentsandappsbecomepartofasymbioticexistence
By2028,33%ofenterprisesoftwareapplicationswillincludeagenticAI,upfromlessthan1%in2024.
Gartner,TSP2025Trends:AgenticAI—TheEvolutionofExperience,24February2025
EnhancedUserExperience
OperationalEfficiency
Scalability
AIagentspersonalizeinteractionstoincreasesatisfaction
AIagentsautomateroutine
taskstoallowhumanstofocusonstrategicinitiatives
AI-drivenSaaSadaptto
businessneedswithout
proportionalincreasesincost
7
LLM-poweredappservicesareintelligent
Modelscanbepromptedtoperformarangeofuser&systemtasks
Input
LLMautomationvariesbydatatype
Response
SaaSappusecasesandbehavior
AppEcosystem
Cloud-nativeApplications
+
algorithmdescription
AgenticAIServices
audio/video
metrics
questions
state/datachanges
template
document
1
LLM
1
ML
1
LLM
1
LLM
1
LLM
1
LLM
userbehaviorLLM
parametersLLM
functions
LLM
1
LLM
interpret/summarize/analyzetrendprojection
answers
recommendationspopulatefields
validateagainstaschemapersonalization
routingdecision(pathaorb?)toolselection+invocation
compilable,runnablecode
Rethinkinghowyoursystemmakesdecisions
Solveproblemswheredeterministicandrule-basedapproachesfallshort
Multi-faceted
decisionmaking
Worklowsinvolvingjudgement,
exceptionsorcontext-sensitivedecisions,forexamplewhentoescalateasupport
ticket
Constantly
changingrules
Systemswhoserulesetsfrequentlychange,haveextensiveconditions,orburdensometomaintain,suchas
identifyinginappropriatelanguage
Relianceon
unstructureddata
Extractingmeaningfromcontent,
interpretinglanguage,audioorimages,andconversationalresponses,suchaswithasupportchatbot
FromLLMstoAgenticSystems
AgentsgivestructuretoLLMs;agenticsystemsgivescaletoagents
LLM
client
chunkedresponse
prompt
LLM
Stateless,long-running,computationallyintensiveresourcesthatcananalyze,
reason,andplan
LLM
Tools,APIs
agent
VectorDB
Agent
Memory
Structuredenrichmentloopthatbuildscontext,invokestools,takesaction,andgathershumanfeedback
Humans
AgenticSystem
agent
multi-agent
protocol
agent
Networksofmultipleagentsorchestratedtosolvecomplextasks
Patternsforagenticsystemscreateintelligence
Agentcollaborationenablesreliable,goal-drivenreasoning
promptchaining
sub-agent
out
pass
agent1
exit
check
fail
Tasksthatcaneasilybedecomposedtosubtasks:
e.g.writeablogthentranslatetoFrench.
routing
taskagent1
which
out
taskagent2
classifieragent
AnLLMrouterclassifiesataskforroutingtoanLLMspecialist:
e.g.classifythissupportcallaseithersalesortechnical
parallelization
taskagent1
blast
taskagent2
vote
out
LLMsubtaskscanbedividedforspeedormultipleruns:
e.g.executesecuritytestsfromdifferentpovs,withsuccessvoting
synthesizer
orchestratoragent
taskagent1
taskagent2
combine
out
AnorchestratorLLMbreaksdowntasksnotknowninadvance:
e.g.gatheringinformationfromtargetsidentifiedbyorchestratorLLM
evaluator-optimizer
solution
evaluatoragent
out
accepted
generatoragent
feedback
OneLLMgeneratesaresponsewhileanotherprovidesfeedback:
e.g.atranslationLLMthathasnuancecheckingfromevaluatorLLM
Createandexecuteacomplexplanwhilestaying“grounded”withfeedback:
e.g.createatravelitineraryandbookallreservationsforavacation
serviceagent
Multi-agentsystemsareorchestrated
Traceable,auditable,debuggable,withpoint-in-timerecovery
Agenticsystemsareworklows
reliableexecutionofAItaskswithvisibilityintorequest/responsedata,built-inretries,anderrorcompensation
agent
worklow
monitor
timeout
trigger
storage
policies
domainlogic
plug-ins
lightsearch
hotelsearch
sequential
parallel
event-driven
statemachine
human-in-the-loop
1.Picklocale
2.Sharedates
3.Travelplan
builditinerary
done
rain
forecasted
recommend
indoor
activities
rulesrulesrules
activities
adjust
budget
plan
favebudgetitinerary
dates
proposed
itinerary
Single-agentenrichmentloop
Prompt→retrieve→enrich→repeatisarepetitivecycle&pattern
enrichment
agenticloop
prompt
out
toolresponse
in
agent
LLM
MCP,APIs
gatherenvor
1.augment
humanfeedback
saveprompt
prompt
tosendbacktothe
agent
API,
functions,orprograms
memory
vectorDB,contextDB
2.initialLLMpass
callLLM
calltool,please
saveresponse
calltool
3.calltoolto
takeaction
4.addresults
toprompt
5.augmented
LLMcall
updatepromptw/results
results
callLLMagain
moreresults
saveresponse
repeat,ifmultiple
toolscalled
LLMsarestateless.Contextisassembled.
Agenticservicesaugmentpromptswithdatafrommanysources.
availablein
for
vectordb
agenticservice
containsknowledge,facts
Facts,knowledge,andrelated
informationaboutvarious
placesthatonecantravelto
prompt
Givenmytravelhistoryandthe
weather,whatisthebestlocation
formetotravel.Bookthesame
typeofhotelwediscussedinour
previousinteraction,butdonot
bookitbeforegettingmy
permission.
Cancelthereservationifthe
weatherchanges.
UsetheWeatherUnderground
APItogatherweatherinfo.
retrievaltype
semanticsearch
thisinteraction’shistory
workingmemory
memorydb
HereisthehotelthatI
recommend,canIhaveyour
permissiontobookit?
long-termmemory
Inthelastconversationwehad,
a5starhotelwas
recommendedbytheLLM.
previousinteractions
external
API
callingAPIsorcode
tools
retrieve&augment
Instructtheagenttocallthe
WeatherUndergroundAPI
withspecificparametersand
location.
event
stream
updatingcontext
events
Thereisastormalertforthe
Bahamasnextweek.
Agenticsystemsaredistributedsystems
Architecturaltechniquesandpracticesrequiredforscaleandresilience
LLM
client
chunkedresponse
prompt
LLM
→Async,non-blockinginvocation
→Event-based,streamingresponses→Backpressure
LLM
→Event-drivenarchitecture
Tools,APIs
agent
→Human-in-the-loopinteraction→Streamingreal-timeingest
VectorDB
Agent
Memory
→Retries,circuitbreakers,timeouts→Memory&toolintegration
Humans
→CQRS
→Replicationandfailover
AgenticSystem
agent
multi-agent
protocol
agent
→Durableworklows
→Distributedtracing
→Discovery&meshnetworking
→Multi-agentprotocols:A2A,BeeAI
Pollquestion
16
Today’sagenda
01LLM,agents,agenticsystems
02Systemengineeringchallenges
03Systemengineeringpractices
04Resourcesandnextsteps
Q&A
05
17
BumpypathfromPOCtoproduction
Topthreeenterprisechallenges:uncertainty,privacy,andscale
52%
failtoreachproduction
8+months
POCtoproduction
“Leadersreportedthatonly48%ofAI
POCs(ProofOfConcept)makeitinto
production,andtheytakeanaverageof8.2monthstogofromPOCtoproduction.”
Uncertainty:Fromdeterministictostochastic
Scalingmakesitevenharder
●LLMsareslow,expensive,andlimitedbytokenwindows.
●Youneedstreaming,chunking,caching,windowing,reranking,fallback.
●You’renotcallingamodel–yourorchestratingadistributedsystem.
●Cough,cough-whyAkka:)
Debuggingisablackbox
●Nostacktraces.
●Noexplanations.
●Logsgiveyouinput/output,notreasons.
●Prompttweakscancausesideeffectsfarfromwhereyoumadechange.
Expectations≠reality
●Peopleexpectmemory,perfectinstructions,stableoutputs,andtruth.
●LLMsforget,hallucinate,anddriftbasedonsampling.
●Withoutscaffolding,theywillbe(andfeel)brittleandinconsistent.
Ifyou’relookingforvibes,itwillbeshortlived
●LLMsareprobabilisticpatternmatchers-notdeterministicAPIs.
●Buildingwiththemmeansthinkinginsystems,notfunctions.
●Itmeanscontrollingchaos,noteliminatingit.
Randomnesscannotbeeliminatedandmustbeembraced
LLMsarenotdeterministiccomponents
●Sameprompt≠sameoutput.
●Theypredicttokens,notanswers.
●Youdon’tpassparameters–youdesignprompts.
●Hardtopredictoutputs,validatecorrectness,orreproducebehavior.
Promptingisn’tprogramming
●Nofunctionsignatures.Nomodularreuse.
●Tinypromptchangescanbreakresults.
●Longpromptsincreaselatency.
●Andpromptsdon’talwaysworkthesameacrossworklowsorchains.
Retrievaladdsmoreuncertainty
●InRAG,you’recombiningsemanticsearch,reranking,andformatting.
●Eachstepaddsnoise.
●Generatingoverpossiblyirrelevantcontext.
●Nowthesystemisdoublystochastic:retrieval+generation.
TestingLLMsisn’tstraightforward
●There’sno.assertEqual().
●Heuristicmetricsarelawed.
●Humanevalsareexpensiveandinconsistent.
●Evenstableoutputsmightstillbewrong.
Privacyandcompliancehorrorshow
LLMsareleakysievescreatingnumerousholesforsecuritytoplug
LLMsmemorizeorreproducePII
fromtrainingdata
Privateorproprietarydatamishandledbyagents
Trainingdatalackingexplicitconsentfromindividuals
InsecuredatahandlinginAPIs
AnonymizeddatacanbereconstructedbyLLMs
Regulationswithdatadeletion
requirementsarenotLLM-enforced LLMdecisionsusingpersonaldatacanintroducebiasandethicsissuesLLMsmayexposePIIbyintegrating
withunapprovedsystems
Establishclearsecurity&
complianceguidelines
Enableenterprise-gradedatacontrols
Implementagenticservice
interactionandloggingpolicies
Chooseagenticplatformwithtracingandreasoningauditing
Implementriskmitigationwithcontentfiltering
Implementagentidentitywithrolesandpermissions
Memoryhardeningwithtrustcontrolsandmin-access-policy
Enterpriseagenticscalerequiresefficiency
Moretxs:eachslower,lesspredictableandmorecostly
SaaS
Agentic
Users
billions
20x
TPS
10,000
100x
p(99)Latency
10-80ms
15-400x
Cost/LLMtx
cheap
10-10,000x
Mar25:thebestperformingLLM@86%MMLUaccuracycosts$98/1Mtokens,or~850,000xmoreexpensivethantheaveragedatabasetransaction.TheworstperformingLLM@36%MMLUaccuracycosts$.01/1M
tokens,or7xmoreexpensive.
Pollquestion
22
Today’sagenda
01LLM,agents,agenticsystems
02Systemengineeringchallenges
03Systemengineeringpractices
04Resourcesandnextsteps
Q&A
05
23
Agenticsystemsengineeringforreliability
1.ExecuteaDDDandAI-DDprocess
→Producecontextmap,ubiquitouslanguage,andboundedcontexts→Defineoverallorchestrationandflowacrossboundedcontexts
→Developlocalizedworkflowsforeachboundedcontext
2.Definedatasovereigntyandscope
→Company-specificrequirements(e.g.,retentionpolicies,auditlogging)→Countryorregionalregulations(e.g.,GDPR,HIPAA,financialdatarules)
3.Establishevaluationstrategy
→Makereasoningvisibleandmeasurablefromthestart→Buildsyntheticevaluationsetstotestreasoningsteps
4.SelecttherightAImodels
→Reasoningmodels:OpenAIo3,ClaudeSonnet,DeepSeek→Generalmodels:OpenAIGPT-4o,GeminiPro,LLaMa
→Smalllanguagemodels:Phi-4,Mistral7B,ClaudeHaiku,GeminiFlash→Fine-tunedindustrymodels:DeepSeek-Coder,CodeLlama
5.Selectagenticplatformarchitecture
→Chooseplatformthatenablesservicesthattransactandreason
→Rqmts:Durableexecution,event-driven,memory,streaming,andtoolssupport→Rqmts:Elastic,<20msp99latencies,resilient,multi-regionfailover
6.Builddeveloperworkflowandagents
→Refinedeveloperworkflow
→Buildinitialversionsofyouragent(s)
7.Deployandobserve
→Release,monitor,andrefineagentbasedonreal-worldbehavior
Techniquesforreducinguncertainty
Designtoanticipaterandomnesswhileembracingfailureasexpected
Leverage
strategiesthatcreatelayersofcertainty
Createreasoninglayersthatbreak
complexplansintostages,steps,or
sub-tasksthatcanbevalidatedorcheckedbydownstreamagentsorhumans.
Incorporateeval-drivendevelopment
Continuoustestingandexperimentationofdifferentinputs(real-world,synthetic,adversarial)totrackandvalidateaccuracy.
ChooseanAgenticAIPlatformproventooperateservicesscalably,safely
Leverageaframeworkandplatformbaseduponprovenruntimethatsupports
distributedorchestration,event-drivenbehaviors,backpressure,streaming,andembeddedmemory.
Createlayersofcertainty
Incorporatemulti-agentandhumanverificationstrategies
Humanintheloop
Delegatedecisionstohumanswithworklow
Agenticawareness
TakemoreLLMthinkingtimewhenobservinguncertainty
Checkandbalance
Getsecondopinionsfromotheragents
Specialization
LimitLLMstomakingdecisionsinoneareaofexpertise
Restricteddecisioning
LimitLLMstoafinitesetofoutcomes
Incorporateevaluation-driven
ytemloispomnlyearteliableandaccurateasitsevaluationframework
varyinputs(adversarial,synthetic,real-world)andmeasureoutputvalidity
Givena
setof
inputs…
Guardrails
Post-Inference
Model(s)
Prompt(s)
Context(s)
…istheoutputaccurate
andreliable?
ChooseaprovenAgenticAIPlatform
LLMsunlockreasoning–butthereisnofreelunch
LLMsarestatelessNorecallofpriorinteractions
Needamemorysystem
LLMsneedcontextMustbetoldeverythingupfront
Toolsintegration
Knowledgeintegration(e.g.,vectordatabases)
LLMsarestochasticSameinput,differentoutputs
RelyondeterministicworkflowsasmuchaspossibleDesignforuncertainty
LLMsareunreliableMayfailtorespondortimeoutunderload
AdoptadistributedsystemsmindsetUseadurableexecutionframework
LLMsareslow
Highlatency,limitedconcurrency
Usestreamingtoimproveresponsiveness
28
Humans
StreamingEndpoints
AnyProtocol|In/Out|CustomAPIs
Efficient
70%lesscompute
API+agenticcombo
Elastic
5MTPS
akkaclustering
AgentConnectivity&Adapters
Non-Blocking|Backpressure|LoadBalanced
SemanticSearchMulti-LLM,A2AIntegration&MCP
Agile
Prodindays
SDK+opsenvs
IOTDevicesAudio/VideoMetrics
Data,APIandAgenticAI
Services
Secure|Observable|Scalable
AgentLifecycleMgmt
Agent
Orchestration
1
2
3
MemoryDatabase
PR
Resilient
Prompt
Events
2
3
0-0RTO/RPO
1
multi-region,
LLMs
multi-masterdata
OtherSystems
replication
VectorDB
TheAkkaagenticadvantage
✓Agentic,AI,apps&data✓Hardenedruntime
✓Simple,expressiveSDK✓Multi-region
✓Automatedops
Streamingendpoints
→Sharedcompute:agentic
co-executionwithAPIservices
→
HTTPandgRPCcustomAPI
endpoints
→Customprotocols,mediatypes,
andedgedeployments
→Real-timestreamingingest,
benchmarkedtoover1TB
Memorydatabase
→Agenticsessionswithinfinitecontext→Contextsnapshotpruningtoavoid
LLMtokencaps
→In-memorycontextsharding,load
balancing,andtrafficrouting
→Multi-regioncontextreplication
→Memoryfiltersforregion-pinningand
cross-sessioncontextcreation
→Embeddedcontextpersistencewith
Postgreseventstore
Agentconnectivity&adaptersAgentorchestrationAgentlifecyclemanagement
→Non-blocking,streamingLLM
inferenceadapterswithbackpressure
→Multi-LLMselection
→LLMada
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年广安鑫鸿集团有限公司招聘备考题库及完整答案详解1套
- 2026年广州市花都区第一幼儿园招聘备考题库及答案详解一套
- 2026年图木舒克唐王城国有资产投资有限公司市场化选聘生产经营副总经理备考题库完整答案详解
- 2026年中复神鹰碳纤维西宁有限公司招聘备考题库及一套参考答案详解
- 2026年乐山市沙湾区医疗集团嘉农镇中心卫生院招聘备考题库完整答案详解
- 2026年国投国证投资(上海)有限公司招聘备考题库参考答案详解
- 2025年度下半年台州市黄岩区公开选调8名公务员备考题库完整参考答案详解
- 2025年光泽县县属国有企业专岗招聘退役军人备考题库有答案详解
- 2026年安龙国家山地户外运动示范公园招聘2名会计备考题库及参考答案详解一套
- 2026年凯里市华鑫高级中学教师招聘备考题库及1套参考答案详解
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识解读
- 2025年查对制度考核考试题库(答案+解析)
- 云南省2025年普通高中学业水平合格性考试历史试题
- 骨关节疾病危害课件
- 《再见2025欢迎2026》迎新年元旦主题班会
- 猫屎咖啡介绍
- DB54T 0540-2025 区域性强降雨气象评估标准
- 2025-2026 学年三年级 道德与法治 随堂检测 试卷及答案
- 广西贵百河2025-2026学年高一上学期12月联考语文试题
- 《手术室护理实践指南(2025版)》
- 四川省2025年高职单招职业技能综合测试(中职类)汽车类试卷(含答案解析)
评论
0/150
提交评论