版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市昌平区高二数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.点M在圆上,点N在直线上,则|MN|的最小值是()A. B.C. D.13.椭圆的左右两焦点分别为,,过垂直于x轴的直线交C于A,B两点,,则椭圆C的离心率是()A. B.C. D.4.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.5.已知三棱锥的各顶点都在同一球面上,且平面,若该棱锥的体积为,,,,则此球的表面积等于()A. B.C. D.6.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.7.圆的圆心为()A. B.C. D.8.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.9.已知直线与直线垂直,则实数a为()A. B.或C. D.或10.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.11.圆上到直线的距离为的点共有A.个 B.个C.个 D.个12.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和则____________________14.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.15.若圆C:与圆D2的公共弦长为,则圆D的半径为___________.16.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值18.(12分)求证:(1)是上的偶函数;(2)是上的奇函数.19.(12分)已知椭圆左右焦点分别为,,离心率为,P是椭圆上一点,且面积的最大值为1.(1)求椭圆的方程;(2)过的直线交椭圆于M,N两点,求的取值范围.20.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分21.(12分)甲、乙两人参加普法知识竞赛,共有5题,选择题(1)甲、乙两人中有一个抽到选择题(2)甲、乙两人中至少有一人抽到选择题22.(10分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.2、C【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,半径为,所以圆心到的距离为,所以的最小值为.故选:C.3、C【解析】由题可得为等边三角形,可得,即得.【详解】∵过垂直于x轴的直线交椭圆C于A,B两点,,∴为等边三角形,由代入,可得,∴,所以,即,又,解得.故选:C.4、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.5、D【解析】由条件确定三棱锥的外接球的球心位置及球的半径,再利用球的表面积公式求外接球的表面积.【详解】由已知,,,可得三棱锥的底面是直角三角形,,由平面可得就是三棱锥外接球的直径,,,即,则,故三棱锥外接球的半径为,所以三棱锥外接球的表面积为故选:D.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.6、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.7、D【解析】由圆的标准方程求解.【详解】圆的圆心为,故选:D8、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.9、B【解析】由题可得,即得.【详解】∵直线与直线垂直,∴,解得或.故选:B.10、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.11、C【解析】求出圆的圆心和半径,比较圆心到直线的距离和圆的半径的关系即可得解.【详解】圆可变为,圆心为,半径为,圆心到直线的距离,圆上到直线的距离为的点共有个.故选:C.【点睛】本题考查了圆与直线的位置关系,考查了学生合理转化的能力,属于基础题.12、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据数列中与的关系,即可求出通项公式.【详解】当时,,当时,,时,也适合,综上,,(),故答案为:【点睛】本题主要考查了数列前n项和与通项间的关系,属于容易题.14、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.15、【解析】首先根据圆与圆的位置关系得到公共弦方程,再根据弦长求解即可.【详解】根据得公共弦方程为:.因为公共弦长为,所以直线过圆的圆心.所以,解得.故答案为:16、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为18、(1)证明见详解(2)证明见详解【解析】利用函数奇偶性的定义证明即可【小问1详解】由题意函数定义域为且故是上的偶函数【小问2详解】由题意函数定义域为且故是上奇函数19、(1)(2)【解析】(1)依题意得到方程组,求出、、,即可求出椭圆方程;(2)首先求出过且与轴垂直时、的坐标,即可得到,当过的直线不与轴垂直时,可设,,直线方程为,联立直线与椭圆方程,消元、列出韦达定理,根据平面向量数量积的坐标表示得到,将韦达定理代入得到,再根据函数的性质求出取值范围;【小问1详解】解:由题意可列方程组,解得,所以椭圆方程为:.【小问2详解】解:①当过的直线与轴垂直时,此时,,,则,.②当过的直线不与轴垂直时,可设,,直线方程为联立得:.所以,=将韦达定理代入上式得:.,,,由①②可知.20、(1)条件选择见解析,,(2)【解析】(1)设数列的首项为,公差为d,选①由求解;选②由求解;选③由求解;则,由,利用数列通项与前n项和公式求解;(2)易知,再利用错位相减法求解.【小问1详解】解:设数列的首项为,公差为d,选①得,则,选②得,则,选③得,则,所以数列的通项公式为因为,所以当时,,则当时,,则,所以是以首项为2,公比为2的等比数列,所以【小问2详解】因为,所以数列的前n项和①②①-②得∴,则21、(1)(2)【解析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况.(1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题(2)根据上述
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光动力治疗质量控制
- 2026年泉州经贸职业技术学院单招职业技能笔试备考题库带答案解析
- 区块链在信贷中的实践
- 2026年阳光学院单招职业技能考试备考试题带答案解析
- 风险预测算法改进-第1篇
- 2025至2030中国替代药物和疗法行业运营态势与投资前景调查研究报告
- 金融人工智能技术的前沿探索
- 机房空调安装协议书合同
- 2026年郑州工业应用技术学院高职单招职业适应性考试模拟试题带答案解析
- 2026年江西生物科技职业学院高职单招职业适应性考试模拟试题带答案解析
- 2026秋招:贵州盐业集团笔试题及答案
- 留学合同补充协议
- 大学计算机教程-计算与人工智能导论(第4版)课件 第10章 云计算与大数据
- 全球创新药临床试验十年趋势洞察
- 2025年超声科工作总结和2026年工作计划
- 2025河南郑州公用事业投资发展集团有限公司招聘10人笔试参考题库附带答案详解(3卷)
- 人工关节制备程序
- 2022北京西城五年级(上)期末语文(教师版)
- AHA2025心肺复苏与心血管急救指南解读课件
- 2025年执业兽医考试真题及解析及答案
- 2025年江苏省建筑施工企业主要负责人安全员A证考核考试题库附答案
评论
0/150
提交评论