版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市卢湾高级中学2026届高二上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.2.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.3.在四面体中,空间的一点满足,若共面,则()A. B.C. D.4.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°5.在四棱锥中,四边形为菱形,平面,是中点,下列叙述正确的是()A.平面 B.平面C.平面平面 D.平面平面6.九连环是我国从古至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数决定解开圆环的个数.在某种玩法中,用表示解开n(,)个圆环所需的最少移动次数,若数列满足,且当时,则解开5个圆环所需的最少移动次数为()A.10 B.16C.21 D.227.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元8.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.409.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.10.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.11.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.直线的倾斜角的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为公差为d,且满足则的取值范围是_____________,的取值范围是_____________14.若恒成立,则______.15.直线l交椭圆于A,B两点,线段AB的中点为,直线是线段AB的垂直平分线,若,D为垂足,则D点的轨迹方程是______16.阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a的取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)18.(12分)已知函数在处有极值.(1)求常数a,b的值;(2)求函数在上的最值.19.(12分)已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.20.(12分)如图,四棱锥中,,且,(1)求证:平面平面;(2)若是等边三角形,底面是边长为3的正方形,是中点,求直线与平面所成角的正弦值.21.(12分)如图,三棱锥中,为等边三角形,且面面,(1)求证:;(2)当与平面BCD所成角为45°时,求二面角的余弦值22.(10分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形(1)证明:是中点;(2)求点到平面的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.2、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.3、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.4、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B5、D【解析】利用反证法可判断A选项;利用面面垂直的性质可判断BC选项;利用面面垂直的判定可判断D选项.【详解】对于A选项,因为四边形为菱形,则,平面,平面,平面,若平面,因为,则平面平面,事实上,平面与平面相交,假设不成立,A错;对于B选项,过点在平面内作,垂足为点,平面,平面,则,,,平面,而过作平面的垂线,有且只有一条,故与平面不垂直,B错;对于C选项,过点在平面内作,垂足为点,因为平面,平面,则,,,则平面,若平面平面,过点在平面内作,垂足为点,因为平面平面,平面平面,平面,平面,而过点作平面的垂线,有且只有一条,即、重合,所以,平面平面,所以,,但四边形为菱形,、不一定垂直,C错;对于D选项,因为四边形为菱形,则,平面,平面,,,平面,因为平面,因此,平面平面平面,D对.故选:D.6、D【解析】根据题意,结合数列递推公式,代入计算即可.【详解】根据题意,由,得.故选:D.7、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D8、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题9、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.10、C【解析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C11、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B12、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】通过判断出,进而将化为基本量求得答案;然后用基本量将化简,进而通过的范围求得答案.【详解】由,,,故答案为:14、1【解析】利用导数研究的最小值为,再构造研究其最值,即可确定参数a的值.【详解】令,则且,当时,递减;当时,递增;所以,即在上恒成立,令,则,当时,递增;当时,递减;所以,综上,.故答案为:115、【解析】设直线l的方程为,代入椭圆方程并化简,然后根据M为线段AB的中点结合根与系数的关系得到k,t间的关系,进而写出线段AB的垂直平分线的直线方程,可以判断它过定点E,再考虑直线l的斜率不存在的情况,根据题意可知,点D在以OE为直径的圆上,最后求出点D的轨迹方程.【详解】设直线l的方程为,代入椭圆方程并化简得:,设,则,解得.因为直线是线段AB的垂直平分线,故直线:,即:令,此时,,于是直线过定点当直线l的斜率不存在时,,直线也过定点点D在以OE为直径的圆上,则圆心为,半径,所以点D轨迹方程为:16、【解析】利用基本不等式得出取得最大值时的条件结合可知,再利用点在椭圆方程上,故可求得、的值,进而求出椭圆的面积.详解】由基本不等式可得,当且仅当时取得最大值,由可知,∵椭圆经过点,∴,解得,,则椭圆的面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.18、(1);(2)最大值为-1,最值为-5.【解析】(1)根据给定条件结合函数的导数建立方程,求解方程并验证作答.(2)利用导数探讨函数在上的单调性即可计算作答.【小问1详解】依题意:,则,解得:,当时,,当时,,当时,,则函数在处有极值,所以.【小问2详解】由(1)知:,,,当时,,当时,,因此,在上单调递增,在上单调递减,于是得,而,,则,所以函数在上的最大值为-1,最值为-5.19、(1);(2)30.【解析】(1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求数列的通项公式;(2)利用等差数列求和公式求和,再利用二次函数求得最值即可.【详解】解:(1)由题意得,数列公差为,则解得:,∴(2)由(1)可得,∴∵,∴当或时,取得最大值【点睛】本题考查利用基本量求解等差数列的通项公式,以及前n项和及最值,属基础题20、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理,结合面面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,利用空间向量夹角公式,结合线面角定义进行求解即可.【小问1详解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小问2详解】∵平面平面,交AD于点F,平面,平面平面,∴平面,以为原点,,的方向分别为轴,轴的正方向建立空间直角坐标系,则,,,,,,,,设平面的法向量为,则,求得法向量为,由,所以直线与平面所成角的正弦值为.21、(1)证明见解析;(2).【解析】(1)根据给定条件证得平面即可推理作答.(2)由与平面BCD所成角确定正边长与CD长的关系,再作出二面角的平面角,借助余弦定理计算作答.【小问1详解】在三棱锥中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小问2详解】取BC中点F,连接AF,DF,如图,因为等边三角形,则,而平面平面,平面平面,平面,于是得平面,是与平面BCD所成角,即,令,则,因,即有,由(1)知,,则有,过C作交AD于O,在平面内过O作交BD于E,连CE,从而得是二面角的平面角,中,,,中,由余弦定理得,,,显然E是斜边中点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 白蚁防治工安全文化知识考核试卷含答案
- 工艺泼染工创新意识知识考核试卷含答案
- 上呼吸道感染患者的护理要点及案例分析
- 山西省北京师范大学选调高校毕业生考试真题2025
- 2025年桐城事业单位真题
- 2025年歙县事业单位考试真题
- 一年级数学(上)计算题专项练习汇编
- 四年级数学(三位数乘两位数)计算题专项练习及答案
- 慢性中耳炎患者睡眠障碍护理干预
- 语言本能的魅力知难言易从不错吃谈起
- 外电线路防护架搭拆安全技术交底
- 【某污水处理工程中的高效沉淀池设计计算案例1600字】
- 广东司法警官职业学院《犯罪心理与社会工作》2023-2024学年第二学期期末试卷
- 卫生院疫苗管理制度
- 2025-2030中国网球行业市场发展趋势与前景展望战略研究报告
- QHDCTS0001-2024中国电信移动终端需求白皮书手持卫星终端分册(2024v1)
- GB/T 3091-2025低压流体输送用焊接钢管
- SJG01-2010地基基础勘察设计规范
- SL631水利水电工程单元工程施工质量验收标准第2部分:混凝土工程
- 八年级下册英语2025电子版人教版单词表
- 精准教育转化罪犯
评论
0/150
提交评论