2026届海南省昌江县矿区中学数学高一上期末检测模拟试题含解析_第1页
2026届海南省昌江县矿区中学数学高一上期末检测模拟试题含解析_第2页
2026届海南省昌江县矿区中学数学高一上期末检测模拟试题含解析_第3页
2026届海南省昌江县矿区中学数学高一上期末检测模拟试题含解析_第4页
2026届海南省昌江县矿区中学数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届海南省昌江县矿区中学数学高一上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点作圆的两条切线,切点分别为,,则所在直线的方程为()A. B.C. D.2.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度3.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-224.设,,,则的大小顺序是A. B.C. D.5.函数f(x)=tan的单调递增区间是()A.(k∈Z) B.(k∈Z)C.(k∈Z) D.(k∈Z)6.计算sin(-1380°)的值为()A. B.C. D.7.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④8.若,则下列不等式成立的是().A. B.C. D.9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.10.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.若“”是“”的必要不充分条件,则实数的取值范围为___________.12.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,,,,则___________.13.函数的单调递增区间为________________.14.函数fx=15.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx216.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合(1)求;(2)若,且,求实数的取值范围.18.已知不等式的解集为(1)求a的值;(2)若不等式的解集为R,求实数m的取值范围.19.已知全集,集合,(1)求,;(2)若,,求实数m的取值范围.20.已知函数.(1)若在上是减函数,求的取值范围;(2)设,,若函数有且只有一个零点,求实数的取值范围.21.已知函数,其中(1)求函数的定义域;(2)若函数的最小值为,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先由圆方程得到圆心和半径,求出的长,以及的中点坐标,得到以为直径的圆的方程,由两圆方程作差整理,即可得出所在直线方程.【详解】因为圆的圆心为,半径为,所以,的中点为,则以为直径的圆的方程为,所以为两圆的公共弦,因此两圆的方法作差得所在直线方程为,即.故选:B.【点睛】本题主要考查求两圆公共弦所在直线方法,属于常考题型.2、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A3、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.4、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.5、B【解析】运用整体代入法,结合正切函数的单调区间可得选项.【详解】由kπ-<2x-<kπ+(k∈Z),得<x<(k∈Z),所以函数f(x)=tan的单调递增区间为(k∈Z).故选:B.【点睛】本题考查正切函数的单调性,属于基础题.6、D【解析】根据诱导公式以及特殊角三角函数值求结果.【详解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故选:D【点睛】本题考查诱导公式以及特殊角三角函数值,考查基本求解能力,属基础题.7、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D8、B【解析】∵a>b>c,∴a﹣c>b﹣c>0,∴故选B9、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D10、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.12、①.②.【解析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案.【详解】由题意得当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;综上:函数的值域为.因为,所以,所以,作出图象与图象,如下如所示由图象可得,所以故答案为:;13、【解析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果.【详解】函数由,复合而成,单调递减令,解得或,即函数的定义域为,由二次函数的性质知在是减函数,在上是增函数,由复合函数的单调性判断知函数的单调递增区间,故答案为.【点睛】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!14、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域15、①.34##0.75②.-【解析】利用三角函数的定义和诱导公式求出结果【详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,16、1【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)先解指数不等式得集合B,再根据补集以及交集定义求结果,(2)根据得,再根据数轴确定实数的取值范围.详解:(1)由,得:.由则:,所以:,(2)由:,又,当时:,当时:,综上可得:,即.点睛:将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解18、(1);(2).【解析】(1)根据题意得到方程的两根为,由韦达定理可得到结果;(2)不等式的解集为R,则解出不等式即可.【详解】(1)由已知,,且方程的两根为.有,解得;(2)不等式的解集为R,则,解得,实数的取值范围为.【点睛】这个题目考查了根和系数的关系,涉及到两根关系的题目,多数是可以考虑韦达定理的应用的,也考查到二次函数方程根的个数的问题.19、(1),或(2)【解析】(1)首先解指数不等式求出集合,再根据交集、并集、补集的定义计算可得;(2)依题意可得,即可得到不等式,解得即可;小问1详解】解:由,即,解得,所以,又,所以,或,所以或;【小问2详解】解:因为,所以,所以,解得,即;20、(1)(2)【解析】(1)由题意结合函数单调性的定义得到关于a的表达式,结合指数函数的性质确定的取值范围即可;(2)利用换元法将原问题转化为二次方程根的分布问题,然后求解实数的取值范围即可.【详解】(1)由题设,若在上是减函数,则任取,,且,都有,即成立.∵.又在上是增函数,且,∴由,得,即,且.∴只须,解.由,,且,知,∴,即,∴.所以在上是减函数,实数的取值范围是.(2)由题知方程有且只有一个实数根,令,则关于的方程有且只有一个正根.若,则,不符合题意,舍去;若,则方程两根异号或有两个相等的正根.方程两根异号等价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论