版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾陆丰市林启恩纪念中学2026届数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若向量,,,则()A. B.C. D.2.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称3.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.4.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③5.设等差数列,前n项和分别是,若,则()A.1 B.C. D.6.如图,在长方体中,,E,F分别为的中点,则异面直线与所成角的余弦值为()A. B.C. D.7.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则8.已知点是椭圆上一点,点,则的最小值为A. B.C. D.9.设为数列的前n项和,且,则=()A.26 B.19C.11 D.910.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.52211.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球12.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线在点处的切线与曲线相切,则______.14.方程表示双曲线,则实数k的取值范围是___________.15.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.16.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,公差,前项和为,,且成等比数列(1)求数列的通项公式(2)设,求数列的前项和18.(12分)已知直线,圆.(1)若l与圆C相切,求切点坐标;(2)若l与圆C交于A,B,且,求的面积.19.(12分)若函数与的图象有一条与直线平行的公共切线,求实数a的值20.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?21.(12分)已知点是圆上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于、两点,记、的斜率分别是、,以、为直径的圆的面积分别为、当、都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由22.(10分)已知,,其中(1)已知,若为真,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据向量垂直得到方程,求出的值.【详解】由题意得:,解得:.故选:A2、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.3、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系4、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D5、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B6、A【解析】利用平行线,将异面直线的夹角问题转化为共面直线的夹角问题,再解三角形.【详解】取BC中点H,BH中点I,连接AI、FI、,因为E为中点,在长方体中,,所以四边形是平行四边形,所以所以,又因为F为的中点,所以,所以,则即为异面直线与所成角(或其补角).设AB=BC=4,则,则,,根据勾股定理:,,,所以是等腰三角形,所以.故B,C,D错误.故选:A.7、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D8、D【解析】设,则,.所以当时,的最小值为.故选D.9、D【解析】先求得,然后求得.【详解】依题意,当时,,当时,,,所以,所以.故选:D10、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.11、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.12、C【解析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【点睛】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13、2或10【解析】求出在处的导数,得出切线方程,与联立,利用可求.【详解】令,,则,,可得曲线在点处的切线方程为.联立,得,,解得或.故答案为:2或10.14、【解析】由题可得,即求.【详解】∵方程表示双曲线,∴,∴.故答案为:.15、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.16、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据成等比数列,有,即求解.(2)由(1)可得,,∴,再利用裂项相消法求和.【详解】(1)由成等比数列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【点睛】本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.18、(1)(2)【解析】(1)求出直线的定点,再由定点在圆上得出切点坐标;(2)由(1)知,证明为直角三角形,求出,,最后由三角形的面积公式求出的面积.【详解】(1)圆可化为直线可化为,由解得即直线过定点,由于,则点在圆上因为l与圆C相切,所以切点坐标为(2)因为l与圆C交于A,B,所以点如下图所示,与相交于点,由以及圆的对称性可知,点为的中点,且由,则直线的方程为圆心到直线的距离为,即直线与圆相切即,则因为,所以【点睛】关键点睛:在第一问中,关键是先确定直线过定点,再由定点在圆上,从而确定切点的坐标.19、或3【解析】设出切点,先求和平行且和函数相切的切线,再将切线和联立,求出的值.【详解】设公共切线曲线上的切点坐标为,根据题意,得公共切线的斜率,所以,所以与函数的图像相切的切点坐标为,故可求出公共切线方程为由直线和函数的图像也相切,得方程,即关于x的方程有两个相等的实数根,所以,解得或320、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.21、(1);(2)是定值,.【解析】(1)由条件可得点轨迹满足椭圆定义,设出椭圆方程,由,的值可得的值,从而求得轨迹方程;(2)设出直线的方程,结合韦达定理,分别求得为定值,也为定值,从而可得是定值【小问1详解】由题意知,,根据椭圆的定义知点的轨迹是以,为焦点的椭圆,设椭圆的方程为,则,,曲线的方程为;【小问2详解】由题意知直线的方程为且m≠0),设直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中铁四局集团有限公司招聘笔试备考题库及答案解析
- 2026年甘肃省酒泉市体育中心招聘笔试备考试题及答案解析
- 2026年1月重庆市万州区黄柏乡人民政府公益性岗位招聘1人笔试参考题库及答案解析
- 2026年西安长安湖居笔记小学招聘笔试模拟试题及答案解析
- 2026河北衡水铁路电气化学校高校应届毕业生引进笔试参考题库及答案解析
- 2026云南省水文水资源局普洱分局公开招聘公益岗位人员(3人)笔试备考题库及答案解析
- 2026河北石家庄市规划馆招聘派遣制人员3人笔试备考题库及答案解析
- 2026年广东环境保护工程职业学院单招职业技能考试参考题库带答案解析
- 2026云南玉溪市易门县城镇公益性岗位人员招聘4人(第一期)笔试模拟试题及答案解析
- 2026广西贺州市平桂区重大项目建设服务中心见习生招聘1人笔试参考题库及答案解析
- 动火作业施工方案5篇
- 2024年重庆市优质企业梯度培育政策解读学习培训课件资料(专精特新 专精特新小巨人中小企业 注意事项)
- 老年人高血压的护理
- 粮油产品授权书
- 责任督学培训课件
- 关于安吉物流市场的调查报告
- 抑郁病诊断证明书
- 心电监测技术操作考核评分标准
- 历史时空观念的教学与评价
- 维克多高中英语3500词汇
- 第五届全国辅导员职业能力大赛案例分析与谈心谈话试题(附答案)
评论
0/150
提交评论