版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市长宁区市级名校2026届数学高一上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.A. B.C. D.2.已知集合,,则A. B.C. D.3.已知函数,若,则实数的取值范围是A. B.C. D.4.下列四个函数,以为最小正周期,且在区间上单调递减的是()A. B.C. D.5.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=logb(x-a)的图象可能是()A. B.C. D.7.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.下列各角中,与终边相同的角为()A. B.160°C. D.360°9.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.83110.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.12.已知函数,则的值为_________.13.函数的最大值为____________14.已知圆心为(1,1),经过点(4,5),则圆标准方程为_____________________.15.已知圆,则过点且与圆C相切的直线方程为_____16.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?(以下数据供参考:,)18.如图,已知在正四棱锥中,为侧棱的中点,连接相交于点(1)证明:;(2)证明:;(3)设,若质点从点沿平面与平面的表面运动到点的最短路径恰好经过点,求正四棱锥的体积19.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以天计),每件的销售价格(单位:元)与时间(单位:天)的函数关系近似满足(为常数,且),日销售量(单位:件)与时间(单位:天)的部分数据如下表所示:已知第天的日销售收入为元(1)求的值;(2)给出以下四个函数模型:①;②;③;④请你根据上表中数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为(单位:元),求的最小值20.已知函数(1)判断并说明函数的奇偶性;(2)若关于的不等式恒成立,求实数的取值范围21.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,选A.2、A【解析】由得,所以;由得,所以.所以.选A3、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D4、A【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断.【详解】最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递增;最小正周期为,在区间上单调递增;故选:A5、A【解析】根据充分条件、必要条件的概念求解即可.【详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A6、C【解析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C.7、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A8、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C9、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A10、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意12、【解析】,填.13、【解析】利用二倍角公式将化为,利用三角函数诱导公式将化为,然后利用二次函数的性质求最值即可【详解】因为,所以当时,取到最大值.【点睛】本题考查了三角函数化简与求最值问题,属于中档题14、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径15、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.16、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4.5(2)1000【解析】(1)把最大振幅和标准振幅直接代入公式M=lgA-lg求解;(2)利用对数式和指数式的互化由M=lgA-lg得A=,把M=8和M=5分别代入公式作比后即可得到答案试题解析:(1)因此,这次地震的震级为里氏4.5级.(2)由可得,即,当时,地震的最大振幅为;当时,地震的最大振幅为;所以,两次地震的最大振幅之比是:答:8级地震的最大振幅是5级地震的最大振幅的1000倍.考点:函数模型的选择与应用18、(1)详见解析;(2)详见解析;(3).【解析】(1)由中位线定理可得线线平面,从而有线面平行;(2)正四棱锥中,底面是正方形,因此有,又PO是正四棱锥的高,从而有PO⊥AC,这样就有AC与平面PBD垂直,从而得面面垂直;(3)把与沿PD摊平,由A、M、C共线,因此新的平面图形是平行四边形,从而为菱形,M到底面ABCD的距离为原正四棱锥高PO的一半,计算可得体积试题解析:(1)证明:连接OM,∵O,M分别为BD,PD的中点,∴在△PBD中,OM//PB,又PB面ACM,OM面ACM,∴PB//面ACM(2)证明:连接PO.∵在正四棱锥中,PA=PC,O为AC的中点,∴PO⊥AC,BD⊥AC,又PO∩BD=O,AC⊥平面PBD,又AC平面ACM,∴平面ACM⊥平面PBD(3)如图,把△PAD与△PCD沿PD展开成平面四边形PADC1由题意可知A,M,C1三点共线,∵△PAD≌△PCD,M为PD的中点,∴AM=MC1,即M为AC1中点,∴平面四边形PADC1为平行四边形,又PA=PC,∴平面四边形PADC1为菱形,∴正四棱锥的侧棱长为2∵PO⊥AC,PO⊥BD,PO⊥面ABCD,∴PO为正四棱锥的高19、(1);(2);(3).【解析】(1)根据第10天的日销售收入,得到,即可求解;(2)由数据知先增后减,选择②,由对称性求得实数的值,再利用进而列出方程组,求得的值,从而求得函数的解析式;(3)根据(2)求得的解析式,然后利用基本不等式和函数的单调性分别求得各段的最小值,比较得到结论.【详解】(1)因为第10天的日销售收入为505元,所以,即,解得.(2)由表格中的数据知,当时间变换时,先增后减,函数模型:①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,所以日销售量与时间的变化的关系式为.(3)由(2)知,所以,即,当时,由基本不等式,可得,当且仅当时,即时等号成立,当时,为减函数,所以函数的最小值为,综上可得,当时,函数取得最小值【点睛】求解所给函数模型解决实际问题的关注点:1、认清所给函数模型,弄清哪些量为待定系数;2、根据已知利用待定系数法,列出方程,确定函数模型中的待定系数;3、结合函数的基本形式,利用函数模型求解实际问题,20、(1)为奇函数(2)【解析】(1)利用函数的奇偶性判断即可;(2)由(1)知为奇函数且单调递增,将不等式恒成立分离参数,利用基本不等式解得即可.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026版咨询《实务》章节习题 第九章 融资方案分析
- 《GBT 14488.1-2008植物油料 含油量测定》专题研究报告
- 道路勘测知识培训课件
- 2026年六年级数学上册月考试卷含答案
- 2025-2026年三年级数学上册期末试卷含答案
- 道德与法治课件安全的玩
- 2026年广东省揭阳市重点学校高一入学数学分班考试试题及答案
- 2023+SGO临床实践声明:化疗超敏反应及脱敏的管理
- 返工返岗安全培训记录课件
- 边境大棚种植培训课件
- 学校石材工程投标书
- 宿舍楼建筑工程施工组织设计方案
- 11340《古代小说戏曲专题》【纸考】2023.12
- 低压电工证题库低压电工证考试题
- GB 5009.11-2024食品安全国家标准食品中总砷及无机砷的测定
- 全面风险清单-采购与业务外包管理风险(2023年11月-雷泽佳编制)
- 挡土墙、围墙石砌体作业安全措施
- copepe低熔点皮芯型复合短纤维生产工艺的开发
- 管理学-李彦斌
- (完整word版)医学学科专业分类及代码
- 单极圆柱齿轮减速器说明书
评论
0/150
提交评论