版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省本溪高中、沈阳二中、营口高中等2026届高一上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在同一坐标系中,函数与大致图象是()A. B.C. D.2.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切3.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是A.①②③ B.②④C.③④ D.②③④4.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断5.已知集合,集合为整数集,则A. B.C. D.6.若函数,则()A. B.C. D.7.已知()A. B.C. D.8.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.9.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)10.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数=___________12.若命题“”为真命题,则的取值范围是______13.两平行线与的距离是__________14.在中,,BC边上的高等于,则______________15.已知函数,,那么函数图象与函数的图象的交点共有__________个16.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在上的最小值为(1)求的单调递增区间;(2)当时,求的最大值以及此时x的取值集合18.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.19.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.20.已知,函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最大值为2,求的值.21.已知函数.(1)当时,求在上的值域;(2)当时,已知,若有,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,结合对数函数与指数函数的性质,即可得出结果.【详解】由指数函数与对数函数的单调性知:在上单调递增,在上单调递增,只有B满足.故选:B.2、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.3、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:由正方体的几何特征可得:①不平行,不正确;
②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;④易证,故,正确;故选D4、A【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A5、A【解析】,选A.【考点定位】集合的基本运算.6、C【解析】应用换元法求函数解析式即可.【详解】令,则,所以,即.故选:C7、D【解析】利用诱导公式对式子进行化简,转化为特殊角的三角函数,即可得到答案;【详解】,故选:D8、A【解析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.9、B【解析】列不等式求解【详解】,解得故选:B10、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】,所以点睛:本题考查函数对称性的应用.由题目问题可以猜想为定值,所以只需代入计算,得.函数对称性的问题要大胆猜想,小心求证12、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:13、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.14、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.15、8【解析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.16、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,此时x的取值集合为.【解析】(1)利用二倍角公式化简函数,再利用余弦函数性质列式计算作答.(2)利用余弦函数性质直接计算作答.【小问1详解】依题意,,令,,解得,所以的单调递增区间为.小问2详解】由(1)知,当时,,,解得,因此,,当,,即,时,取得最大值1,则取得最大值,所以的最大值为,此时x的取值集合为.18、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.19、选择见解析;(1);(2)单调递减区间为.【解析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函数在上的单调递减区间为.【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式
函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.
对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sint的性质20、(1);(2)零点为或;(3).【解析】(1)由函数的解析式可得,解可得的取值范围,即可得答案,(2)根据题意,由函数零点的定义可得,即,解可得的值,即可得答案,(3)根据题意,将函数的解析式变形可得,设,分析的最大值可得的最大值为,则有,解可得的值,即可得答案.【详解】解:(1)根据题意,,必有,解可得,即函数的定义域为,(2),若,即,即,解可得:或,即函数的零点为或,(3),设,,则,有最大值4,又由,则函数有最大值,则有,解可得,故.21、(1);(2).【解析】(1)将方程整理为关于的二次函数,令,利用二次函数的图象与性质求函数的值域;(2)利用换元法及二次函数的性质求出函数在上的值域A,根据对数函数的单调性求出函数在区间上的值域B,根据题意有,根据集合的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年管理会计师专业能力认证考试试题附答案
- 迪士尼员工安全培训卡课件
- 云南国防工业职业技术学院《室内设计(军工场馆)》2024-2025 学年第一学期期末试卷(艺术专业)
- 边坡支护安全教育培训课件
- 内科主治医师考试基础知识练习试题及答案
- 2026年书记员测试题及答案
- 中小学德育活动策划与学生品格塑造专项工作总结(2篇)
- 2025年企业审计年终工作总结(3篇)
- 银行内部控制规范制度
- 2026年工作室成员个人工作总结(2篇)
- 2025年统编版语文三年级上册第七、八单元模拟测试卷
- 2026年江苏盐城高中政治学业水平合格考试卷试题(含答案详解)
- 主动脉瓣置换术指南
- 装配式装修管线分离培训课件
- 2025年陕西公务员《申论(C卷)》试题含答案
- 管理体系不符合项整改培训试题及答案
- 医院住院部建筑投标方案技术标
- 偏瘫康复的科普小知识
- 2025年(AIGC技术)生成式AI应用试题及答案
- 肺癌全程管理课件
- 商用变压器知识培训内容课件
评论
0/150
提交评论