版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省韶关市2026届高二数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.2.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.3.已知经过两点(5,m)和(m,8)的直线的斜率等于1,则m的值为()A.5 B.8C. D.74.已知抛物线的焦点为,为抛物线上第一象限的点,若,则直线的倾斜角为()A. B.C. D.5.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.6.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.7.在正方体中,,则()A. B.C. D.8.对于圆上任意一点的值与x,y无关,有下列结论:①当时,r有最大值1;②在r取最大值时,则点的轨迹是一条直线;③当时,则.其中正确的个数是()A.3 B.2C.1 D.09.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.10.,则()A. B.C. D.11.已知抛物线,则其焦点到准线的距离为()A. B.C.1 D.412.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某市开展“爱我内蒙,爱我家乡”摄影比赛,9位评委给参赛作品A打出的分数如茎叶图所示,记分员算得平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______14.已知空间直角坐标系中,点,,若,与同向,则向量的坐标为______.15.已知抛物线的焦点为,过焦点的直线交抛物线与两点,且,则拋物线的准线方程为________.16.与直线平行,且距离为的直线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由18.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值19.(12分)已知圆C经过点,,且圆心C在直线上(1)求圆C的标准方程;(2)过点向圆C引两条切线PD,PE,切点分别为D,E,求切线PD,PE的方程,并求弦DE的长20.(12分)在直角坐标系中,点到两点、的距离之和等于,设点的轨迹为,直线与交于、两点(1)求曲线的方程;(2)若,求的值21.(12分)已知.(1)求在上的单调递增区间;(2)已知锐角内角,,的对边长分别是,,,若,.求面积的最大值.22.(10分)设函数(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C2、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.3、C【解析】根据斜率的公式直接求解即可.【详解】由题可知,,解得.故选:C【点睛】本题主要考查了两点间斜率的计算公式,属于基础题.4、C【解析】设点,其中,,根据抛物线的定义求得点的坐标,即可求得直线的斜率,即可得解.【详解】设点,其中,,则,可得,则,所以点,故,因此,直线的倾斜角为.故选:C.5、D【解析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.6、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B7、A【解析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为,而,所以有,故选:A8、B【解析】可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,圆在两直线内部,则,的距离为,则,,对于①,当时,r有最大值1,得出结论;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,得出结论;对于③当时,则得出结论.【详解】设,故可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,可知直线平移时,点与直线,的距离之和均为,的距离,即此时圆在两直线内部,,的距离为,则,对于①,当时,r有最大值1,正确;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,正确;对于③当时,则即,解得或,故错误.故正确结论有2个,故选:B.9、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A10、B【解析】求出,然后可得答案.【详解】,所以故选:B11、B【解析】化简抛物线的方程为,求得,即为焦点到准线的距离.【详解】由题意,抛物线,即,解得,即焦点到准线的距离是故选:B12、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由平均数列出方程,求出x的值.【详解】由题意得:,解得:.故答案为:114、【解析】求出坐标,根据给条件表示出坐标,利用向量模的坐标表示计算作答.【详解】因,,则,因与同向,则设,因此,,于是得,解得,则,所以向量的坐标为.故答案为:15、【解析】根据题意作出图形,设直线与轴的夹角为,不妨设,设抛物线的准线与轴的交点为,过点作准线与轴的垂线,垂足分别为,过点分别作准线和轴的垂线,垂足分别为,进一步可以得到,进而求出,同理求出,最后解得答案.【详解】设直线与轴的夹角为,根据抛物线的对称性,不妨设,如图所示.设抛物线的准线与轴的交点为,过点作准线与轴的垂线,垂足分别为,过点分别作准线和轴的垂线,垂足分别为.由抛物线的定义可知,,同理:,于是,,则抛物线的准线方程为:.故答案为:.16、或【解析】由题意,设所求直线方程为,根据两平行直线间的距离公式即可求解.【详解】解:由题意,设所求直线方程为,因为直线与直线的距离为,所以,解得或,所以所求直线方程为或,故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,,所以,点到直线的距离,所以,整理可得:即,所以或,所以或,所以存在直线:或使得的面积为.18、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.19、(1)(2)或,【解析】(1)设圆心,根据圆心在直线上及圆过两点建立方程求解即可;(2)分切线的斜率存在与不存在分类讨论,利用圆心到切线的距离等于半径求解,再根据圆的切线的几何性质求弦长即可.【小问1详解】设圆心,因为圆心C在直线上,所以①因为A,B是圆上的两点,所以,所以,即②联立①②,解得,所以圆C的半径,所以圆C的标准方程为【小问2详解】若过点P的切线斜率不存在,则切线方程为若过点P的切线斜率存在,设为k,则切线方程为,即由,解得,所以切线方程为综上,过点P的圆C的切线方程为或设PC与DE交于点F,因为,,PC垂直平分DE,所以,所以所以20、(1);(2).【解析】(1)本题可根据椭圆的定义求出点的轨迹;(2)本题首先可设、,然后联立椭圆与直线方程,通过韦达定理得出、,最后通过得出,代入、的值并计算,即可得出结果.【详解】(1)因为点到两点、的距离之和等于,所以结合椭圆定义易知,点的轨迹是以点、为焦点且的椭圆,则,,,点的轨迹.(2)设,,联立,整理得,则,,因为,所以,即,整理得,则,整理得,解得.【点睛】关键点点睛:本题考查根据椭圆定义求动点轨迹以及直线与抛物线相关问题的求解,椭圆的定义为动点到两个定点的距离为一个固定的常数,考查韦达定理的应用,考查计算能力,是难题.21、(1);(2).【解析】(1)首先根据三角函数恒等变换得到,再求其单调增区间即可.(2)根据得到,根据余弦定理和基本不等式得到,结合三角形面积公式计算即可.【小问1详解】由题意.由,得,令,得,所以在上的单调递增区间是【小问2详解】因为,所以,得,又C是锐角,所以,由余弦定理:,得,所以,且当时等号成立所以,故面积最大值为22、(1)的单调递减区间为,单调递增区间为;(2).【解析】(1)求出,进而判断函数的单调性,然后讨论符号后可得函数的单调区间;(2)令,则有两个不同的零点,利用导数讨论的单调性并结合零点存在定理可得实数的取值范围.【小问1详解】当时,,,记,则,所以在上单调递增,又,所以当时,;当时,,所以单调递减区间为,单调递增区间为【小问2详解】令,得,记,则,令得,列表得.x0↘极小值↗要使在上有两个零点,则,所以且函数在和上各有一个零点当时,,,,则,故上无零点,与函数在上有一个零点矛盾,故不满足条件所以,又因为,所以考虑,设,,则,则在上单调递减,故当时,,所以,且,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年齐鲁师范学院公开招聘人员(17人)备考题库附答案
- 2025年航天科技控股集团股份有限公司副总经理招聘1人备考题库附答案
- 2025年安徽省烟草专卖局(公司)招聘拟录用人员公示考前自测高频考点模拟试题附答案
- 2025年河北邯郸武安市国有企业秋季博硕人才引进岗位报考专业笔试备考试题附答案
- 2025山东聊城市莘县在全县范围选聘一批营商环境监督员备考题库附答案
- AI赋能康复治疗:行业实践与应用案例
- 2026黑龙江哈尔滨市通河县第一批公益性岗位招聘62人笔试参考题库及答案解析
- 2025秋人教版道德与法治八年级上册9.1社会责任我担当课件
- (拓展拔高)2025-2026学年下学期人教统编版小学语文六年级第三单元练习卷
- 2026年朝阳师范高等专科学校单招职业技能考试模拟试题带答案解析
- 2025年盐城中考历史试卷及答案
- 2025年郑州工业应用技术学院马克思主义基本原理概论期末考试模拟试卷
- 2026年七年级历史上册期末考试试卷及答案(共六套)
- 2025年六年级上册道德与法治期末测试卷附答案(完整版)
- 附件二;吊斗安全计算书2.16
- 2025年全载录丨Xsignal 全球AI应用行业年度报告-
- 学校食堂改造工程施工组织设计方案
- 资产评估期末试题及答案
- 郑州大学《大学英语》2023-2024学年第一学期期末试卷
- 雨课堂在线学堂《西方哲学-从古希腊哲学到晚近欧陆哲学》单元考核测试答案
- IPC7711C7721C-2017(CN)电子组件的返工修改和维修(完整版)
评论
0/150
提交评论