2026届河北省保定市高一数学第一学期期末学业水平测试试题含解析_第1页
2026届河北省保定市高一数学第一学期期末学业水平测试试题含解析_第2页
2026届河北省保定市高一数学第一学期期末学业水平测试试题含解析_第3页
2026届河北省保定市高一数学第一学期期末学业水平测试试题含解析_第4页
2026届河北省保定市高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河北省保定市高一数学第一学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的大致区间是A. B.C. D.2.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限3.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是()A. B.C. D.4.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)5.已知函数,则的值是()A. B.C. D.6.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.87.全称量词命题“,”的否定是()A., B.,C., D.以上都不正确8.如图,在正方体中,分别为的中点,则异面直线与所成的角等于A. B.C. D.9.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)10.已知函数的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为B.函数的图象关于直线对称C.函数的图象关于点对称D.函数在区间上单调递减二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线,直线若,则______________12.函数的单调递增区间为___________.13.已知函数,若方程有4个不同的实数根,则的取值范围是____14.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.15.函数的定义域是____________.16.已知向量、满足:,,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值18.已知函数.(1)化简;(2)若,求下列表达式的值:①;②.19.如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.20.若函数有两个零点,则实数的取值范围是_____.21.函数是奇函数.(1)求的解析式;(2)当时,恒成立,求m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题2、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.3、B【解析】依次执行循坏结构,验证输出结果即可.【详解】根据程序框图,运行结构如下:第一次循环,,第二次循环,,第三次循环,,此时退出循环,故应填:.故选:B.4、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理5、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D6、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B7、C【解析】根据全称量词命题的否定是存在量词命题,即可得出结论.【详解】全称量词命题“,”的否定为“,”.故选:C.8、B【解析】取的中点,则由三角形的中位线的性质可得平行且等于的一半,故或其补角即为异面直线与所成的角.设正方体的棱长为1,则,,故为等边三角形,故∠EGH=60°考点:空间几何体中异面直线所成角.【思路点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想.取的中点,由三角形的中位线的性质可得或其补角即为异面直线与所成的角.判断为等边三角形,从而求得异面直线与所成的角的大小9、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.10、B【解析】先依据图像求得函数的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【详解】由图象可知,即,所以,又,可得,又因为所以,所以,故A错误;当时,.故B正确;当时,,故C错误;当时,则,函数不单调递减.故D错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.12、【解析】根据复合函数“同增异减”的原则即可求得答案.【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.13、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.14、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:15、【解析】利用对数函数的定义域列出不等式组即可求解.【详解】由题意可得,解得,所以函数的定义域为.故答案为:16、.【解析】将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【详解】,,,因此,,故答案为.【点睛】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,令,则,,又,,解得,即,所以函数的零点为【小问2详解】解:因为,,令,则,,,对称轴,当,即时,,;②当,即时,,(舍;综上:实数的值为18、(1)(2)①,②;【解析】(1)直接利用诱导公式化简即可;(2)依题意可得,再根据同角三角函数的基本关系将弦化切,再代入计算可得;【小问1详解】解:因为,所以;【小问2详解】解:由,得①②19、(1)见解析;(2)见解析【解析】(1)连结,交点,连,推出//1,即可证明平面;(2)取的中点,连结,证明四边形是平行四边形,证明,得到平面,然后证明平面平面试题解析:(1)连结,交点,连,则是的中点,因为是的中点,故//.因为平面,平面.所以//平面.(2)取的中点,连结,因为是的中点,故//且.显然//,且,所以//且则四边形是平行四边形.所以//.因为,所以又,所以直线平面.因为//,所以直线平面.因为平面,所以平面平面20、【解析】函数有两个零点,和的图象有两个交点,画出和的图象,如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论