版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天成教育命题研究院2026届数学高一上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在区间为A. B.C. D.2.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-13.下列图象是函数图象的是A. B.C. D.4.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.5.的值是()A B.C. D.6.已知某几何体的三视图如图所示,根据图中标出的尺寸单位:,可得这个几何体得体积是A. B.C.2 D.47.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6008.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)9.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.10.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____12.已知为第二象限角,且,则_____13.设,用表示不超过的最大整数.则称为高斯函数.例如:,,已知函数,则的值域为___________.14.函数是幂函数,且当时,是减函数,则实数=_______15.不等式对任意实数都成立,则实数的取值范围是__________16.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数,若实数满足,则称是的不动点.现设(1)当时,分别求与的所有不动点;(2)若与均恰有两个不动点,求a的取值范围;(3)若有两个不动点,有四个不动点,证明:不存在函数满足18.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题19.为了印刷服务上一个新台阶,学校打印社花费5万元购进了一套先进印刷设备,该设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,问:(1)设年平均费用为y万元,写出y关于x的表达式;(年平均费用=)(2)这套设备最多使用多少年报废合适?(即使用多少年的年平均费用最少)20.设函数.(1)若函数的图象C过点,直线与图象C交于A,B两点,且,求a,b;(2)当,时,根据定义证明函数在区间上单调递增.21.已知函数,,.(1)若函数与的图象的一个交点的横坐标为2,求a;(2)若,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】要判断函数的零点位置,我们可以根据零点存在定理,依次判断区间的两个端点对应的函数值,然后根据连续函数在区间上零点,则与异号进行判断【详解】,,故函数的零点必落在区间故选C【点睛】本题考查的知识点是函数的零点,解答的关键是零点存在定理:即连续函数在区间上与异号,则函数在区间上有零点2、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.3、D【解析】由题意结合函数的定义确定所给图象是否是函数图象即可.【详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【点睛】本题主要考查函数的定义及其应用,属于基础题.4、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.5、C【解析】由,应用诱导公式求值即可.【详解】.故选:C6、B【解析】先根据三视图得到几何体的形状,然后再根据条件中的数据求得几何体的体积【详解】由三视图可知该几何体是一个以俯视图为底面的四棱锥,如下图中的四棱锥由题意得其底面面积,高,故几何体的体积故选B【点睛】由三视图还原几何体的方法(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体(2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体7、A【解析】频数为考点:频率频数的关系8、C【解析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.9、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.10、C【解析】对于A、B、D均可能出现,而对于C是正确的二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.12、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.13、【解析】对进行分类讨论,结合高斯函数的知识求得的值域.【详解】当为整数时,,当不是整数,且时,,当不是整数,且时,,所以的值域为.故答案为:14、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值15、【解析】利用二次不等式与相应的二次函数的关系,易得结果.详解】∵不等式对任意实数都成立,∴∴<k<2故答案为【点睛】(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法16、【解析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【点睛】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)见详解.【解析】【小问1详解】因为,所以即,所以,所以的不动点为;解,,所以,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,所以,所以的不动点为;【小问2详解】由得,由、得,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,因为与均恰有两个不动点,所以①或②且和有同根,由①得,②中两方程相减得,所以,故,综上,a的取值范围是;【小问3详解】(3)设的不动点为,的不动点为,所以,设,则,所以,所以是的不动点,同理,也是的不动点,只能,假设存在,则或,因为过点,所以,否则矛盾,且,否则,所以一定存在,与均不同,所以,所以,所以有另外不动点,矛盾,故不存在函数满足18、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19、(1)(2)最多使用10年报废【解析】(1)根据题意,即可求得年平均费用y关于x的表达式;(2)由,结合基本不等式,即可求解.【小问1详解】解:由题意,设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,所以关于的表达式为.【小问2详解】解:因为,所以,当且仅当时取等号,即时,函数有最小值,即这套设备最多使用10年报废.20、(1),(2)证明见解析【解析】(1)由题意得,,设,,由题意得,即的两根为或,结合方程根与系数关系及,代入可求;(2),先设,利用作差法比较与的大小即可判断【小问1详解】由题意得,,设,,由题意得,即的两根为或,所以,所以,整理得,,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(新能源汽车检测与维修技术)检测技术阶段测试题及答案
- 2025年中职应用马其顿语(日常马语交流)试题及答案
- 2025年大学二年级(管理学)应用管理综合测试题及答案
- 2025年高职高尔夫服务与管理(服务应用)试题及答案
- 2025年大学化工类(化工性能测试)试题及答案
- 2025年大学作物生产与经营管理(作物生产系统)试题及答案
- 2025年中职广播电视编导(广播电视教育心理学)试题及答案
- 2025年高职(生态农业技术)有机农业种植测试题及答案
- 2025年中职幼儿教育学(幼儿教育基础)试题及答案
- 2025年中职西式烹饪工艺(凉菜制作工艺)试题及答案
- 气性坏疽隔离护理
- 四川省眉山市东坡区苏祠共同体2024-2025学年七年级上学期期末英语试题(含答案)
- 2025年大学大一(法学)法理学基础试题及答案
- 2025杭州市市级机关事业单位编外招聘10人(公共基础知识)测试题附答案
- 通往2026:中国消费零售市场十大关键趋势-尼尔森iq-202512
- 6.3 哪个团队收益大 教学设计 2025-2026学年数学北师大版八年级上册
- 影院映前广告方案
- IE七大工具培训
- 2025年春国家开放大学《学前教育科研方法》形考作业1-3+大作业参考答案
- 2025-2026学年人教版二年级数学上册期末测试卷及答案
- 第二十二章 二次函数 章末复习试卷(含答案)2025-2026学年人教版数学九年级上册
评论
0/150
提交评论