江苏省南京市六合区程桥高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第1页
江苏省南京市六合区程桥高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第2页
江苏省南京市六合区程桥高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第3页
江苏省南京市六合区程桥高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第4页
江苏省南京市六合区程桥高级中学2026届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市六合区程桥高级中学2026届高一数学第一学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,均为锐角,,,则()A. B.C. D.2.已知角是第四象限角,且满足,则()A. B.C. D.3.函数的一个零点所在的区间是()A. B.C. D.4.已知,则等于()A.1 B.2C.3 D.65.已知函数与在下列区间内同为单调递增的是()A. B.C. D.6.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数7.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20248.在内,使成立的的取值范围是A. B.C. D.9.已知,则A. B.C. D.10.若偶函数在定义域内满足,且当时,;则的零点的个数为()A.1 B.2C.9 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.已知,那么的值为___________.12.若关于的不等式对任意的恒成立,则实数的取值范围为____________13.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.14.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.15.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm216.已知角的顶点为坐标原点,始边为轴的正半轴,终边经过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.18.已知集合,(1)当m=5时,求A∩B,;(2)若,求实数m取值范围19.已知,且为第二象限角(1)求的值;(2)求值.20.已知角终边经过点,求21.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由结合平方关系可解.【详解】因为为锐角,,所以,又,均为锐角,所以,所以,所以.故选:B2、A【解析】直接利用三角函数的诱导公式以及同角三角函数基本关系式化简求解即可【详解】由,得,即,∵角是第四象限角,∴,∴故选:A3、B【解析】根据零点存在性定理,计算出区间端点的函数值即可判断;【详解】解:因为,在上是连续函数,且,即在上单调递增,,,,所以在上存在一个零点.故选:.【点睛】本题考查函数的零点的范围,注意运用零点存在定理,考查运算能力,属于基础题4、A【解析】利用对数和指数互化,可得,,再利用即可求解.【详解】由得:,,所以,故选:A5、D【解析】根据正余弦函数的单调性,即可得到结果.【详解】由正弦函数的单调性可知,函数在上单调递增;由余弦函数的单调性可知,函数在上单调递增;所以函数与在下列区间内同为单调递增的是.故选:D.6、C【解析】根据基本函数单调性直接求解.【详解】因为,所以函数在是增函数,故选:C7、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:8、C【解析】直接画出函数图像得到答案.【详解】画出函数图像,如图所示:根据图像知.故选:.【点睛】本题考查了解三角不等式,画出函数图像是解题的关键.9、D【解析】考点:同角间三角函数关系10、D【解析】由题,的零点的个数即的交点个数,再根据的对称性和周期性画出图象,数形结合分析即可【详解】由可知偶函数周期为2,故先画出时,的函数图象,再分别利用偶函数关于轴对称、周期为2画出的函数图象,则的零点个数即为的零点个数,即的交点个数,易得在上有个交点,故在定义域内有18个交点.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、##0.8【解析】由诱导公式直接可得.详解】.故答案为:12、【解析】根据题意显然可知,整理不等式得:,令,求出在的范围即可求出答案.【详解】由题意知:,即对任意的恒成立,当,得:,即对任意的恒成立,即对任意的恒成立,令,在上单减,所以,所以.故答案为:13、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.14、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.15、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.16、【解析】利用三角函数定义求出、的值,结合诱导公式可求得所求代数式的值.【详解】由三角函数的定义可得,,因此,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,即可得到方程,解得即可;(2)首先判断函数的单调性,再根据定义法证明,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)根据函数的奇偶性与单调性将函数不等式转化为自变量的不等式,再解得即可;【小问1详解】解:因为是定义在上的奇函数,所以,即,即,所以,即;解得,所以【小问2详解】解:函数是上的减函数证明:在上任取,,设,因为,所以,则,所以即所以在上单调递减【小问3详解】解:因为是定义在上奇函数所以可化为又在上单调递减,所以解得18、(1),(2)【解析】(1)根据集合的交集、并集运算即得解;(2)转化为,分,两种情况讨论,列出不等式控制范围,求解即可【小问1详解】(1)当时,可得集合,,根据集合的运算,得,.【小问2详解】解:由,可得,①当时,可得,解得;②当时,则满足,解得,综上实数的取值范围是.19、(1)cos,(2)【解析】(1)通过三角恒等式先求,再求即可;(2)先通过诱导公式进行化简,再将,的值代入即可得结果.【小问1详解】因为sin=,所以,且是第二象限角,所以cos=,从而【小问2详解】原式=20、7【解析】要求值的三角函数式可化简为,再利用任意角三角函数的定义求出,代入即得所求【详解】因为角终边经过点,则又21、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论