江苏省兴化市第一中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第1页
江苏省兴化市第一中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第2页
江苏省兴化市第一中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第3页
江苏省兴化市第一中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第4页
江苏省兴化市第一中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省兴化市第一中学2026届高二数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.62.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.83.棱长为1的正四面体的表面积是()A. B.C. D.4.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为A. B.C. D.5.若抛物线与直线:相交于两点,则弦的长为()A.6 B.8C. D.6.“”是“圆与轴相切”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知直线与直线,若,则()A.6 B.C.2 D.8.已知,向量,,若,则x的值为()A.-1 B.1C.-2 D.29.已知数列为等比数列,,则的值为()A. B.C. D.210.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.12011.直线的倾斜角为()A.0 B.C. D.12.若存在过点(0,-2)的直线与曲线和曲线都相切,则实数a的值是()A.2 B.1C.0 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.知函数,若函数有两个不同的零点,则实数的取值范围为_____________.14.函数在上的最大值为______________15.已知定点,动点分别在直线和上运动,则的周长取最小值时点的坐标为__________.16.在公差不为0的等差数列中,为其前n项和,若,则正整数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.18.(12分)命题存在,使得;命题对任意的,都有(1)若命题p为真时,求实数a的取值范围;若命题q为假时,求实数a的取值范围;(2)如果命题为真命题,命题为假命题,求实数a的取值范围19.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)20.(12分)已知数列的首项,且满足.(1)求证:数列为等差数列;(2)设,求数列的前项和.21.(12分)已知数列的前项和为,满足_______请在①;②,;③三个条件中任选一个,补充在上面的横线上,完成上述问题.注:若选择不同的条件分别解答,则按第一个解答计分(1)求数列的通项公式;(2)数列满足,求数列的前项和22.(10分)已知抛物线的焦点为F,为抛物线C上的点,且.(1)求抛物线C的方程;(2)若直线与抛物线C相交于A,B两点,求弦长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C2、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C3、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D4、A【解析】若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质5、B【解析】由题得抛物线的焦点坐标为刚好在直线上,再联立直线和抛物线的方程,利用韦达定理和抛物线的定义求解.【详解】解:由题得.由题得抛物线的焦点坐标为刚好在直线上,设,联立直线和抛物线方程得,所以.所以.故选:B6、A【解析】根据充分不必要条件的定义和圆心到轴的距离求出可得答案.【详解】时,圆的圆心坐标为,半径为2,此时圆与轴相切;当圆与轴相切时,因为圆的半径为2,所以圆心到轴的距离为,所以,“”是“圆与轴相切”的充分不必要条件故选:A7、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A8、D【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.【详解】因向量,,,则,解得,所以x的值为2.故选:D9、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B10、B【解析】利用组合数计算出正确答案.【详解】甲乙两类课程都有选择的不同选法种数为.故选:B11、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.12、A【解析】在两曲线上设切点,得到切线,又因为(0,-2)在两条切线上,列方程即可.【详解】的导函数为,的导函数为,若直线与和的切点分别为(,),,∴过(0,-2)的直线为、,则有,可得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据分段函数的性质,结合幂函数、一次函数的单调性判断零点的分布,进而求m的范围.【详解】由解析式知:在上为增函数且,在上,时为单调函数,时无零点,故要使有两个不同的零点,即两侧各有一个零点,所以在上必递减且,则,可得.故答案为:14、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值15、【解析】作点分别关于直线和的对称点,根据对称性即可求出三角形周长的最小值,利用三点共线求出的坐标.【详解】如图所示:定点关于函数对称点,关于轴的对称点,当与直线和的交点分别为时,此时的周长取最小值,且最小值为此时点的坐标满足,解得,即点.故答案为:.16、13【解析】设等差数列公差为d,根据等差数列通项公式、前n项和公式及可求k.【详解】设等差数列公差为d,∵,∴,即,即,∴.故答案为:13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.

(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.

(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,

∵该校高一年级共有学生640人,

∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.

(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,

成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.

若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,

则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),

(C,F),(D,E),(D,F),(E,F)共15种.

如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,

那么这两名学生的数学成绩之差的绝对值一定不大于10.

如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,

那么这两名学生数学成绩之差的绝对值一定大于10.

记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,

则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.

∴所求概率为P(M)=.【点睛】本题主要考查频率分布直方图的应用以及古典概型概率的求法,还考查了运算求解的能力,属于中档题.18、(1)p为真时或,q为假时;(2){或}.【解析】(1)p为真应用判别式求参数范围;q为真,根据恒成立求参数范围,再判断q为假对应的参数范围.(2)由题设易得p、q一真一假,讨论p、q的真假,结合(1)的结果求a的取值范围【小问1详解】若p真,则有实数根,∴,解得或若q为真,则,即故q为假时,实数a的取值范围为【小问2详解】∵命题真命题,命题为假命题,∴p,q一真一假,当p真q假时,,可得当p假q真时,,可得综上,实数a取值范围为或.19、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.20、(1)证明见解析(2)【解析】(1)化简得到,由此证得数列为等差数列.(2)先求得,然后利用错位相减求和法求得.【小问1详解】.又数列是以1为首项,4为公差等差数列.【小问2详解】由(1)知:,则数列的通项公式为,则,①,②,①-②得:,,,,.21、(1)条件选择见解析,;(2).【解析】(1)选①,可得出,由可求得数列的通项公式;选②,分析可知数列是公差为的等差数列,根据已知条件求出的值,利用等差数列的求和公式可求得数列的通项公式;选③,在等式中令可求得的值,即可得出数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:选①,因为,则,则,当时,,也满足,所以,对任意的,;选②,因为,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论