版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广西北海市普通高中高三数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.2.设,满足约束条件,则的最大值是()A. B. C. D.3.在中,“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.365.设集合,,则()A. B.C. D.6.集合,则()A. B. C. D.7.i是虚数单位,若,则乘积的值是()A.-15 B.-3 C.3 D.158.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.9.的展开式中,含项的系数为()A. B. C. D.10.设是虚数单位,则()A. B. C. D.11.已知集合,,若,则()A.4 B.-4 C.8 D.-812.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则最小值为__________.14.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有____人.15.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=,那么椭圆的方程是.16.已知函数为偶函数,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.18.(12分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.19.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.20.(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().①当时,求函数的极值;②若函数存在“F点”,求k的值;(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.21.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.22.(10分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.2、D【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.3、C【解析】
由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区间上单调递减,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.4、D【解析】
由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.5、D【解析】
利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.6、D【解析】
利用交集的定义直接计算即可.【详解】,故,故选:D.【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.7、B【解析】,∴,选B.8、A【解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.9、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.10、A【解析】
利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.11、B【解析】
根据交集的定义,,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.12、C【解析】
根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14、750【解析】因为0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00515、【解析】
由题意可设椭圆方程为:∵短轴的一个端点与两焦点组成一正三角形,焦点在轴上∴又,∴,∴椭圆的方程为,故答案为.考点:椭圆的标准方程,解三角形以及解方程组的相关知识.16、【解析】
根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.18、(1),;(2).【解析】
(1)先将曲线化为普通方程,再由直角坐标系与极坐标系之间的转化关系:,可得极坐标方程和曲线的直角坐标方程;(2)由已知可得出射线的极坐标方程为,联立和的极坐标方程可得点A和点B的极坐标,从而得出,由的范围可求得的取值范围.【详解】(1)曲线的普通方程为,即,其极坐标方程为;曲线的极坐标方程为,即,其直角坐标方程为;(2)射线的极坐标方程为,联立,联立,的取值范围是【点睛】本题考查圆的参数方程与普通方程互化,圆,抛物线的极坐标方程与普通方程的互化,以及在极坐标下的直线与圆和抛物线的位置关系,属于中档题.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零点分段讨论法把函数改写成分段函数的形式,分三种情况分别解不等式,然后取并集即可;(Ⅱ)利用绝对值三角不等式求出的最小值,利用均值不等式求出的最小值,结合题意,只需即可,解不等式即可求解.【详解】(Ⅰ)当时,,,或,或,或所以不等式的解集为;(Ⅱ)因为,又(当时等号成立),依题意,,,有,则,解之得,故实数的取值范围是.【点睛】本题考查由存在性问题求参数的范围、零点分段讨论法解绝对值不等式、利用绝对值三角不等式和均值不等式求最值;考查运算求解能力、分类讨论思想、逻辑推理能力;属于中档题.20、(1)①极小值为1,无极大值.②实数k的值为1.(2)【解析】
(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)①当时,(),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.②设是函数的一个“F点”().(),是函数的零点.,由,得,,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据①知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,,),可得().又函数存在不相等的两个“F点”和,,是关于x的方程()的两个相异实数根.又,,,即,从而,,即..,,解得.所以,实数a的取值范围为.(2)(解法2)因为(a,b,,)所以().又因为函数存在不相等的两个“F点”和,所以,是关于x的方程组的两个相异实数根.由得,.(2.1)当是函数一个“F点”时,且.所以,即.又,所以,所以.又,所以.(2.2)当不是函数一个“F点”时,则,是关于x的方程的两个相异实数根.又,所以得所以,得.所以,得.综合(2.1)(2.2),实数a的取值范围为.【点睛】本题考查利用导数求函数极值,以及由函数的极值求参数值等,是一道关于函数导数的综合性题目,考查学生的分析和数学运算能力,有一定难度.21、(1);(2)见解析【解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职药剂(药物分析实验)试题及答案
- 2025年中职水产养殖技术(苗种繁育)试题及答案
- 2025年大学市场营销(市场营销调研)试题及答案
- 2025年大学智慧林业技术(森林资源监测)试题及答案
- 2025年中职民用爆炸物品技术(生产工艺)试题及答案
- 2025年大学农学(作物栽培)试题及答案
- 2025年中职(数字媒体技术应用)动画制作基础试题及答案
- 2025年高职(应用化工技术)化工工艺优化试题及答案
- 2025年高职机电一体化(电气控制)试题及答案
- 2025年大学大二(农业机械化及其自动化)农业机械设计阶段测试试题及答案
- 儿童支气管哮喘急性发作急救培训流程
- 2026年焊工(技师)考试题库(附答案)
- 四川藏区高速公路集团有限责任公司2026年校园招聘参考题库完美版
- 基本医疗保险内控制度
- 抽纸定制合同协议书
- 物料代购服务合同
- 2025-2026学年人教版小学音乐四年级上册期末综合测试卷及答案
- 高数上册期末考试及答案
- 风电场运维安全责任书2025年版
- 腊八蒜的课件
- 2025年70岁以上的老人三力测试题库附答案
评论
0/150
提交评论