版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西大同市第一中学2026届高二数学第一学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前项和为,若公比,则=()A. B.C. D.2.在等差数列中,若,,则公差d=()A. B.C.3 D.-33.已知函数在处取得极值,则()A. B.C. D.4.抛物线的焦点坐标为()A. B.C. D.5.如图,在三棱柱中,E,F分别是BC,中点,,则()A.B.C.D.6.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.37.圆关于直线l:对称的圆的方程为()A. B.C. D.8.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.9.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.10.已知数列满足,则()A. B.1C.2 D.411.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.12.曲线在处的切线的斜率为()A.-1 B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.若数列的前n项和,则其通项公式________14.已知圆,圆与轴相切,与圆外切,且圆心在直线上,则圆的标准方程为________15.已知椭圆交轴于A,两点,点是椭圆上异于A,的任意一点,直线,分别交轴于点,,则为定值.现将双曲线与椭圆类比得到一个真命题:若双曲线交轴于A,两点,点是双曲线上异于A,的任意一点,直线,分别交轴于点,,则为定值___16.已知点在圆C:()内,过点M的直线被圆C截得的弦长最小值为8,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,平面、底面为菱形,为的中点.(1)证明:平面;(2)设,菱形的面积为,求二面角的余弦值.18.(12分)在平面直角坐标系中,点在抛物线上(1)求的值;(2)若直线l与抛物线C交于,两点,,且,求的最小值19.(12分)已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式及前项的和.20.(12分)已知直线过点,且其倾斜角是直线的倾斜角的(1)求直线的方程;(2)若直线与直线平行,且点到直线的距离是,求直线的方程21.(12分)如图1,在边长为4的等边三角形ABC中,D,E,F分别是AB,AC,BC的中点,沿DE把折起,得到如图2所示的四棱锥.(1)证明:平面.(2)若二面角的大小为60°,求平面与平面的夹角的大小.22.(10分)如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使得直线平面?若存在,求的值;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.2、C【解析】由等差数列的通项公式计算【详解】因为,,所以.故选:C【点睛】本题考查等差数列的通项公式,利用等差数列通项公式可得,3、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B4、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C5、D【解析】根据空间向量线性运算的几何意义进行求解即可.【详解】,故选:D6、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.7、A【解析】首先求出圆的圆心坐标与半径,再设圆心关于直线对称的点的坐标为,即可得到方程组,求出、,即可得到圆心坐标,从而求出对称圆的方程;【详解】解:圆的圆心为,半径,设圆心关于直线对称的点的坐标为,则,解得,即圆关于直线对称的圆的圆心为,半径,所以对称圆的方程为;故选:A8、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题9、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.10、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B11、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A12、D【解析】先求解出导函数,然后代入到导函数中,所求导数值即为切线斜率.【详解】因为,所以,所以切线的斜率为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由和计算【详解】由题意,时,,所以故答案为:14、【解析】根据题干求得圆的圆心及半径,再利用圆与轴相切,与圆外切,且圆心在直线上确定圆的圆心及半径.【详解】圆的标准方程为,所以圆心,半径为由圆心在直线上,可设因为与轴相切,与圆外切,于是圆的半径为,从而,解得因此,圆的标准方程为故答案为:【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.两圆相切注意讨论内切外切两种情况.15、-【解析】由双曲线的方程可得,的坐标,设的坐标,代入双曲线的方程可得的横纵坐标的关系,求出直线,的方程,令,分别求出,的纵坐标,求出的表达式,整理可得为定值【详解】由双曲线的方程可得,,设,则,可得,直线的方程为:,令,则,可得,直线的方程为,令,可得,即,∴,,,故答案为:-另解:双曲线方程化为,只是将的替换为-,故答案也是只需将中的替换为-即可.故答案为:-.16、【解析】根据点与圆的位置关系,可求得r的取值范围,再利用过圆内一点最短的弦,结合弦长公式可得到关于r的方程,求解即可.【详解】由点在圆C:内,且所以,又,解得过圆内一点最短的弦,应垂直于该定点与圆心的连线,即圆心到直线的距离为又,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)连接交于点,连接,则,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形的边长,取中点,可证,如图建系,求得点坐标及坐标,即可求得平面的法向量,根据平面PAD,可求得面的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接交于点,连接,则、E分别为、的中点,所以,又平面平面所以平面(2)由菱形的面积为,,易得菱形边长为,取中点,连接,因为,所以,以点为原点,以方向为轴,方向为轴,方向为轴,建立如图所示坐标系.则所以设平面的法向量,由得,令,则所以一个法向量,因为,,所以平面PAD,所以平面的一个法向量所以,又二面角为锐二面角,所以二面角的余弦值为【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.18、(1)1(2)【解析】(1)将点代入即可求解;(2)利用向量数量积为3求出,再对式子变形后使用基本不等式进行求解最小值.【小问1详解】将代入抛物线,解得:.【小问2详解】,在抛物线C上,故,,解得:或2,因为,所以,即,故,当且仅当,即时等号成立,故的最小值为.19、(1)证明见解析;(2),.【解析】(1)证明出,即可证得结论成立;(2)由(1)的结论并确定数列的首项和公比,可求得数列的通项公式,再利用分组求和法可求得.【小问1详解】证明:因为数列满足,,则,且,则,,,以此类推可知,对任意的,,所以,,故数列为等比数列.【小问2详解】解:由(1)可知,数列是首项为,公比为的等比数列,则,所以,,因此,.20、(1);(2)或【解析】(1)先求得直线的倾斜角,由此求得直线的倾斜角和斜率,进而求得直线的方程;(2)设出直线的方程,根据点到直线的距离列方程,由此求解出直线的方程【详解】解(1)直线的倾斜角为,∴直线的倾斜角为,斜率为,又直线过点,∴直线的方程为,即;(2)设直线的方程为,则点到直线的距离,解得或∴直线的方程为或21、(1)证明见解析;(2).【解析】(1)由结合线面平行的判定即可推理作答.(2)取DE的中点M,连接,FM,证明平面平面,再建立空间直角坐标系,借助空间向量推理、计算作答.【小问1详解】在中,因为E,F分别是AC,BC的中点,所以,则图2中,,而平面,平面,所以平面.【小问2详解】依题意,是正三角形,四边形是菱形,取DE的中点M,连接,FM,如图,则,,即是二面角的平面角,,取中点N,连接,则有,在中,由余弦定理得:,于是有,,即,而,,,平面,则平面,又平面,从而有平面平面,因平面平面,平面,因此,平面,过点N作,则两两垂直,以点N为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,则,,,,,,,设平面的法向量,则,令,得,设平面的法向量,则,令,得,显然有,即,所以平面与平面的夹角为.【点睛】方法点睛:利用向量法求二面角:(1)找法向量,分别求出两个半平面所在平面的法向量,然后求得法向量的夹角,结合图形得到二面角的大小;(2)找与交线垂直的直线的方向向量,分别在二面角的两个半平面内找到与交线垂直且以垂足为起点的直线的方向向量,则这两个向量的夹角就是二面角的平面角22、(1)证明见解析(2)(3)存在点,使得平面,且【解析】(1)由面面垂直的性质可得平面,再由线面垂直的性质可证得结论,(2)可证得两两垂直,所以分别以为轴,轴,轴建立空间直角坐标系,利用空间向量求解,(3)设,然后利用空间向量求解【小问1详解】证明:因为为正方形,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业反腐倡廉制度规范
- 建立巡察反馈规范制度
- 危货罐体清洗制度规范
- 后厨大门管理制度规范
- 商场柜台轮班制度规范
- 制度下约束思想上规范
- 破碎机润滑制度规范要求
- 制度编写格式设置规范
- 复合超硬材料制造工岗前规章考核试卷含答案
- 铸铁机工岗前理论技能考核试卷含答案
- 儿童乐园合伙协议书合同
- 颈椎间盘突出症的治疗和护理讲课件
- 外立面改造项目脚手架施工专项方案
- 2023年全国职业院校技能大赛-生产事故应急救援赛项规程
- 广东省建筑工程混凝土结构抗震性能设计规程
- 切削液回收及处理合同模板
- 2023年移动综合网络资源管理系统技术规范功能分册
- 幼儿园大班班本课程-邂逅水墨课件
- 计算机辅助翻译智慧树知到期末考试答案章节答案2024年西华大学
- HGT 2520-2023 工业亚磷酸 (正式版)
- 阎良现代设施花卉产业园规划设计方案
评论
0/150
提交评论