版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省滨州市邹平双语学校三区高一数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数且,则实数的取值范围为()A. B.C. D.2.若,则下列关系式一定成立的是()A. B.C. D.3.已知函数为偶函数,在单调递减,且在该区间上没有零点,则的取值范围为()A. B.C. D.4.已知是定义在上的奇函数,且,当且时.已知,若对恒成立,则的取值范围是()A. B.C. D.5.是第四象限角,,则等于A. B.C. D.6.已知,则的大小关系为A. B.C. D.7.已知,,,则,,三者的大小关系是()A. B.C. D.8.令,,,则三个数、、的大小顺序是()A. B.C. D.9.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则A. B.C. D.10.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为角终边上一点,且,则______12.为偶函数,则___________.13.已知正三棱柱的棱长均为2,则其外接球体积为__________14.函数的定义域为_______________15.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.16.设函数的图象为,则下列结论中正确的是__________(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到图象.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.18.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.19.已知函数(,且)(1)求的值及函数的定义域;(2)若函数在上的最大值与最小值之差为3,求实数的值20.已知直线和点,设过点且与平行的直线为.(1)求直线的方程;(2)求点关于直线的对称点21.已知函数,,.(1)若函数与的图象的一个交点的横坐标为2,求a;(2)若,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】易知函数为奇函数,且在R上为增函数,则可化为,则即可解得a的范围.【详解】函数,定义域为,满足,∴,令,∴,∴为奇函数,,∵函数,在均为增函数,∴在为增函数,∴在为增函数,∵为奇函数,∴在为增函数,∴,解得.故选:B.2、A【解析】判断函数的奇偶性以及单调性,由此可判断函数值的大小,即得答案.【详解】由可知:,为偶函数,又,知在上单调递减,在上单调递增,故,故选:A.3、D【解析】根据函数为偶函数,得到,再根据函数在单调递减,且在该区间上没有零点,由求解.【详解】因为函数为偶函数,所以,由,得,因为函数在单调递减,且在该区间上没有零点,所以,解得,所以的取值范围为,故选:D4、A【解析】由奇偶性分析条件可得在上单调递增,所以,进而得,结合角的范围解不等式即可得解.【详解】因为是定义在上的奇函数,所以当且时,根据的任意性,即的任意性可判断在上单调递增,所以,若对恒成立,则,整理得,所以,由,可得,故选:A.【点睛】关键点点睛,本题解题关键是利用,结合变量的任意性,可判断函数的单调性,属于中档题.5、B【解析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值【详解】由题是第四象限角,则故选B【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键6、D【解析】,且,,,故选D.7、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C8、D【解析】由已知得,,,判断可得选项.【详解】解:由指数函数和对数函数的图象可知:,,,所以,故选:D【点睛】本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于中档题.9、C【解析】利用甲、乙两名同学6次考试的成绩统计直接求解【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,故选【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题10、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.12、【解析】根据偶函数判断参数值,进而可得函数值.【详解】由为偶函数,得,,不恒为,,,,故答案为:.13、【解析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,14、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.15、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.16、①③【解析】图象关于直线对称;所以①对;图象关于点对称;所以②错;,所以函数在区间内是增函数;所以③对;因为把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到,所以④错;填①③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】(1)连结,交点,连,推出//1,即可证明平面;(2)取的中点,连结,证明四边形是平行四边形,证明,得到平面,然后证明平面平面试题解析:(1)连结,交点,连,则是的中点,因为是的中点,故//.因为平面,平面.所以//平面.(2)取的中点,连结,因为是的中点,故//且.显然//,且,所以//且则四边形是平行四边形.所以//.因为,所以又,所以直线平面.因为//,所以直线平面.因为平面,所以平面平面18、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.19、(1)0;;(2)或.【解析】(1)代入计算得,由对数有意义列出不等式求解作答.(2)由a值分类讨论单调性,再列式计算作答.【小问1详解】函数,则,由解得:,所以的值是0,的定义域是.【小问2详解】当时,在上单调递减,,,于是得,即,解得,则,当时,在上单调递增,,,于是得,即,解得,则,所以实数的值为或.20、(1)x+2y-3=0(2)B(2,-2)【解析】(1)根据两直线平行则斜率相同,再将点代入即可求出直线的方程;(2)设出所求点的坐标,可表示出中点的坐标,再根据点关于直线的对称性质可得方程组,即可求出对称点的坐标.试题解析:(1)设,点代入∴:(2)设,则,的中点∴∴∴21、(1)(2)证明见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职第一学年(园林工程技术)植物造景设计试题及答案
- 2026年计算机应用(办公自动化)试题及答案
- 2025年中职(烹饪工艺与营养)中式热菜制作试题及答案
- 道路围墙大门施工组织设计
- 贵州省贵阳市南明区2025年八年级上学期期末测试物理试题附答案
- 2026年部分大专可报不限专业武汉大学人民医院招聘7人备考题库参考答案详解
- 软件框架开发技术(SSM)期末考试试卷(6)及答案
- 2025 小学四年级思想品德下册传统节日习俗优化调查课件
- 养老院老人生活照顾人员行为规范制度
- 养老院老人健康饮食营养师职业发展规划制度
- 我国商业银行风险限额管理体系:构建、实践与优化路径探究
- 3ds Max产品模型制作课件 项目2 初识3ds Max 2021软件
- 化工总控工职业技能鉴定考试题库大全-上(单选题)
- 中华人民共和国安全生产法培训课件
- TCAMET 《城市轨道交通 车辆表面贴膜》编制说明(征求意见稿)
- 医疗卫生机构网络安全管理办法
- 《保健食品标识培训》课件
- 2023年非标自动化机械设计工程师年度总结及来年计划
- 股骨颈骨折围手术期护理
- 蜂窝煤成型机设计课程设计
- 民间个人借款担保书
评论
0/150
提交评论