2026届北京市朝阳区17中高二上数学期末考试模拟试题含解析_第1页
2026届北京市朝阳区17中高二上数学期末考试模拟试题含解析_第2页
2026届北京市朝阳区17中高二上数学期末考试模拟试题含解析_第3页
2026届北京市朝阳区17中高二上数学期末考试模拟试题含解析_第4页
2026届北京市朝阳区17中高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市朝阳区17中高二上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A. B.C. D.2.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.163.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.4.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.5.执行如图所示的程序框图,输出的值为()A. B.C. D.6.新型冠状病毒(2019-NCoV)因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名,为考察某种药物预防该疾病的效果,进行动物试验,得到如下列联表:患病未患病总计服用药104555未服药203050总计3075105下列说法正确的是()参考数据:,0.050.013.8416.635A.有95%的把握认为药物有效B.有95%的把握认为药物无效C.在犯错误的概率不超过0.05的前提下认为药物无效D.在犯错误的概率不超过0.01的前提下认为药物有效7.已知向量,满足条件,则的值为()A.1 B.C.2 D.8.已知,,,若,,共面,则λ等于()A. B.3C. D.99.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.10.执行如图所示的程序框图,则输出的结果为()A. B.C. D.11.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.212.在平形六面体中,其中,,,,,则的长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,若,则实数___________.14.设等差数列{an}的前n项和为Sn,且S2020>0,S2021<0,则当n=_____________时,Sn最大.15.根据抛物线的光学性质可知,从抛物线的焦点发出的光线经该抛物线反射后与对称轴平行,一条平行于对称轴的光线经该抛物线反射后会经过抛物线的焦点.如图所示,从沿直线发出的光线经抛物线两次反射后,回到光源接收器,则该光线经过的路程为___________.16.如图所示四棱锥,底面ABCD为直角梯形,,,,,是底面ABCD内一点(含边界),平面MBD,则点O轨迹的长度为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥的底面是矩形,底面,且,设E、F、G分别为PC、BC、CD的中点,H为EG的中点,如图.(1)求证:平面;(2)求直线FH与平面所成角的大小.18.(12分)已知圆:和圆外一点,过点作圆的切线,切线长为.(1)求圆的标准方程;(2)若圆:,求证:圆和圆相交,并求出两圆的公共弦长.19.(12分)如图,在多面体ABCDEF中,四边形ABCD是菱形,∠ABC=60°,FA⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求证:平面FAC⊥平面EFC;(2)求多面体ABCDEF的体积20.(12分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值21.(12分)已知圆,直线(1)证明直线与圆C一定有两个交点;(2)求直线与圆相交的最短弦长,并求对应弦长最短时的直线方程22.(10分)如图,在四棱锥中,侧面底面,是以为斜边的等腰直角三角形,,,,点E为的中点.(1)证明:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】依题意该程序框图是统计这12名青少年视力小于等于的人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于的人数,由茎叶图可知视力小于等于的有5人,故选:B2、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B3、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.4、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D5、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.6、A【解析】根据列联表计算,对照临界值即可得出结论【详解】根据列联表,计算,由临界值表可知,有95%的把握认为药物有效,A正确故选:A7、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.8、C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C9、A【解析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A10、B【解析】写出每次循环的结果,即可得到答案.【详解】当时,,,,;,此时,退出循环,输出的的为.故选:B【点睛】本题考查程序框图的应用,此类题要注意何时循环结束,建议数据不大时采用写出来的办法,是一道容易题.11、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B12、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:214、1010【解析】先由S2020>0,S2021<0,判断出,,即可得到答案.【详解】等差数列{an}的前n项和为,所以,因为1+2020=1010+1011,所以,所以.,所以,所以当n=1010时,Sn最大.故答案为:1010.15、12【解析】求出,利用抛物线上的点到焦点的距离等于到准线的距离可得答案.【详解】由得,设,,由抛物线性质,与轴的交点即为抛物线的焦点,,,,所以,所以该光线经过的路程为12.故答案为:12.16、【解析】绘出如图所示的辅助线,然后通过平面平面得出点轨迹为线段,最后通过求出、的长度即可得出结果.【详解】如图,延长到点,使且,连接,取上点,使得,作,交于点,交于点,连接,因为,所以,因为,又,所以,,因为,,,所以平面平面,因为平面,面,所以点轨迹为线段,因为,,所以,因为,,,所以,因为底面为直角梯形,所以,,,,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接CH,延长交PD于点K,连接BK,根据E、F、G分别为PC、BC、CD的中点,易得,再利用线面平行的判定定理证明.(2)建立空间直角坐标,求得的坐标,平面PBC一个法向量,代入公式求解.【详解】(1)如图所示:连接CH,延长交PD于点K,连接BK,因为设E、F、G分别为PC、BC、CD的中点,所以H为CK的中点,所以,又平面平面,所以平面;(2)建立如图所示直角坐标系则,所以,设平面PBC一个法向量为:,则,有,令,,设直线FH与平面所成角为,所以,因为,所以.【点睛】本题主要考查线面平行的判定定理,线面角的向量求法,还考查了转化化归的思想和逻辑推理,运算求解的能力,属于中档题.18、(1)(2)证明见解析,公共弦长为【解析】(1)根据切线长公式计算即可得到,然后代入可得圆的方程.(2)联立两圆的方程作差可得直线的方程为,然后利用圆的弦长公式计算即可.【小问1详解】圆的标准方程为,所以圆心为,半径.由勾股定理可得,解得.所以圆的标准方程为.【小问2详解】由题意得圆的圆心,半径,圆的圆心,半径,因为,,所以圆和圆相交.设两圆相交于,两点,则两圆的方程相减得直线的方程为,圆心到直线的距离.所以,所以两圆的公共弦长为.19、(1)证明见解析;(2).【解析】(1)连接BD交AC于点O,设FC的中点为P,连接OP,EP,证明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱锥和四棱锥的体积即可计算作答.【小问1详解】连接BD交AC于点O,设FC的中点为P,连接OP,EP,如图,菱形ABCD中,O为AC的中点,则OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四边形OPED为平行四边形,则OD//EP,即BD//EP,因为FA⊥平面ABCD,BD平面ABCD,则FA⊥BD,又四边形ABCD是菱形,即BD⊥AC,而FAAC=A,平面FAC,因此,BD⊥平面FAC,即EP⊥平面FAC,又EP平面EFC,所以平面FAC⊥平面EFC.【小问2详解】由已知,是正三角形,,则,取AD的中点G,连接CG,而△ACD为正三角形,从而有CG⊥AD,且,因FA⊥平面ABCD,FA平面ADEF,则平面ADEF⊥平面ABCD,又平面ADEF平面ABCD=AD,而CG平面ABCD,因此,CG⊥平面ADEF,则点C到平面ADEF的距离为,又,于是得,所以多面体ABCDEF的体积.20、(1)是,;(2)【解析】(1)由题意设出所在直线方程,与抛物线方程联立,化为关于的一元二次方程,由根与系数的关系即可求得为定值;(2)当的斜率为0时,求得三角形的面积为;当的斜率不为0时,由弦长公式求解,再由点到直线的距离公式求到的距离,代入三角形面积公式,利用函数单调性可得三角形的面积大于,由此可得面积的最小值【详解】(1)由题意知,直线斜率存在,不妨设其方程为,联立抛物线的方程可得,设,,则,,所以,,所以,所以是定值(2)当直线的斜率为0时,,又,,此时当直线的斜率不力0时,,又因为,且直线的斜率不为0,所以,即,所以点到直线的距离,此时,因为,所以,综上,面积的最小值为21、(1)证明见解析(2)答案见解析【解析】(1)由,变形为求解直线过的定点,即可得解;(2)法一:由圆心和连线与直线垂直求解;法二:由圆心到直线距离最大时求解.【小问1详解】解:,所以,令,所以直线经过定点,圆可变形为,因为,所以定点在圆内,所以直线和圆C相交,有两个交点;【小问2详解】法一:圆心为,到距离为,圆心与连线的斜率为,最短弦与圆心和的连线垂直,所以,所以最短弦长为,直线的方程为法二:圆心到直线距离:,,要求d的最大值,则,当且仅当时,d的最大值为,所以最短弦长为,直线的方程为.22、(1)见解析;(2)【解析】(1)用线线平行证明线面平行,∴在平面PCD内作BE的平行线即可;(2)求二面角的大小,可以用空间向量进行求解,根据已知条件,以AD中点O为原点,OB,AD,OP分别为x、y、z轴建立坐标系﹒【小问1详解】如图,取PD中点F,连接EF,FC﹒∵E是AP中点,∴EFAD,由题知BCAD,∴BCEF,∴BCFE是平行四边形,∴BE∥CF,又CF平面PCD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论