2026届陕西省西安工业大学附中高二数学第一学期期末检测模拟试题含解析_第1页
2026届陕西省西安工业大学附中高二数学第一学期期末检测模拟试题含解析_第2页
2026届陕西省西安工业大学附中高二数学第一学期期末检测模拟试题含解析_第3页
2026届陕西省西安工业大学附中高二数学第一学期期末检测模拟试题含解析_第4页
2026届陕西省西安工业大学附中高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省西安工业大学附中高二数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A.3 B.C. D.2.若函数在上为单调减函数,则的取值范围()A. B.C. D.3.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.4.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线5.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.636.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.87.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.8.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.489.已知空间向量,,则()A. B.C. D.10.设为可导函数,且满足,则曲线在点处的切线的斜率是A. B.C. D.11.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.512.复数的虚部为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在点处的切线方程是_________14.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______15.已知等比数列的各项均为实数,其前项和为,若,,则__________.16.设抛物线的焦点为,直线过焦点,且与抛物线交于两点,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与圆.(1)当直线l恰好平分圆C的周长时,求m的值;(2)当直线l被圆C截得的弦长为时,求m的值.18.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.19.(12分)如图,四棱锥的底面是正方形,平面平面,E为的中点(1)若,证明:;(2)求直线与平面所成角的余弦值的取值范围20.(12分)已知双曲线与椭圆有公共焦点,且它的一条渐近线方程为.(1)求椭圆的焦点坐标;(2)求双曲线的标准方程21.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,22.(10分)已知椭圆:的长轴长为6,离心率为,长轴的左,右顶点分别为A,B(1)求椭圆的方程;(2)已知过点的直线交椭圆于M、N两个不同的点,直线AM,AN分别交轴于点S、T,记,(为坐标原点),当直线的倾斜角为锐角时,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B2、A【解析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,则,当时,在上单调递减,在上单调递减,所以,,故.故选:A.3、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D4、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.5、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.6、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.7、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B8、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D9、C【解析】直接利用向量的坐标运算法则求解即可【详解】因为,,所以,故选:C10、D【解析】由题,为可导函数,,即曲线在点处的切线的斜率是,选D【点睛】本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式11、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C12、D【解析】直接根据.复数的乘法运算结合复数虚部的定义即可得出答案【详解】解:,所以复数的虚部为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得函数的导数,得到且,再结合直线的点斜式,即可求解.【详解】由题意,函数,可得,则且,所以在点处切线方程是,即故答案为:.14、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:15、1【解析】分公比和两种情况讨论,结合,,即可得出答案.【详解】解:设等比数列的公比为,当,由,,不合题意,当,由,得,综上所述.故答案为:1.16、【解析】抛物线焦点为,由于直线和抛物线有两个交点,故直线斜率存在.根据抛物线的定义可知,故的纵坐标为,横坐标为.不妨设,故直线的方程为,联立直线方程和抛物线方程,化简得,解得,故.所以.【点睛】本小题主要考查直线和抛物线的位置关系,考查抛物线的几何性质和定义.考查三角形面积公式.在解题过程中,先根据题目所给抛物线的方程求得焦点的坐标,然后利用抛物线的定义:到定点的距离等于到定直线的距离,由此求得点的坐标,进而求得直线的方程,联立直线方程和抛物线方程求得点的坐标.最后求得面积比.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)将圆C的圆心坐标代入直线l的方程计算作答.(2)由给定条件求出圆心C到直线l的距离,再利用点到直线距离公式计算作答.【小问1详解】圆的圆心,半径,因直线l平分圆C的周长,则直线l过圆心,即,解得,所以m的值是.【小问2详解】由(1)知,圆C的圆心,半径,因直线l被圆C截得的弦长为,则有圆心C到直线l的距离,因此,,解得,所以m的值是1.18、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.19、(1)证明见解析;(2).【解析】(1)取的中点F,连接.先证明,,即证平面,原题即得证;(2)分别取的中点G,H,连接,证明为直线与平面所成的角,设正方形的边长为1,,在中,,即得解.【小问1详解】解:取的中点F,连接因为,则为正三角形,所以因为平面平面,则平面因为平面,则.①因为四边形为正方形,E为的中点,则,所以,从而,所以.②又平面,结合①②知,平面,所以【小问2详解】解:分别取的中点G,H,则,又,,则,所以四边形为平行四边形,从而.因为,则因为平面平面,,则平面,从而,因为平面,所以平面,从而平面连接,则为直线与平面所成的角.设正方形的边长为1,,则从而,.在中,因为当时,单调递增,则,所以直线与平面所成角的余弦值的取值范围是.20、(1);(2).【解析】(1)由椭圆方程及其参数关系求出参数c,即可得焦点坐标.(2)由渐近线及焦点坐标,可设双曲线方程为,再由双曲线参数关系求出参数,即可得双曲线标准方程.【小问1详解】由题设,,又,所以椭圆的焦点坐标为.【小问2详解】由题设,令双曲线为,由(1)知:,可得,所以双曲线的标准方程为.21、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论