湖南省长沙市长沙县九中2026届高二上数学期末考试模拟试题含解析_第1页
湖南省长沙市长沙县九中2026届高二上数学期末考试模拟试题含解析_第2页
湖南省长沙市长沙县九中2026届高二上数学期末考试模拟试题含解析_第3页
湖南省长沙市长沙县九中2026届高二上数学期末考试模拟试题含解析_第4页
湖南省长沙市长沙县九中2026届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市长沙县九中2026届高二上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.12.已知数列满足且,则()A.是等差数列 B.是等比数列C.是等比数列 D.是等比数列3.已知抛物线的焦点是双曲线的一个焦点,则双曲线的渐近线方程为()A. B.C. D.4.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则5.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.6.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有7.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.38.已知关于x的不等式的解集为空集,则的最小值为()A. B.2C. D.49.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.1110.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.11.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.12.已知等比数列{an}中,,,则()A. B.1C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.设,若直线与直线平行,则的值是________14.已知函数有零点,则的取值范围是___________.15.若“,”是真命题,则实数m的取值范围________.16.如图,在三棱锥中,,二面角的余弦值为,若三棱锥的体积为,则三棱锥外接球的表面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求的长.18.(12分)已知圆C的圆心在y轴上,且过点,(1)求圆C的方程;(2)已知圆C上存在点M,使得三角形MAB的面积为,求点M的坐标19.(12分)如图所示,椭圆的左、右焦点分别为、,左、右顶点分别为、,为椭圆上一点,连接并延长交椭圆于点,已知椭圆的离心率为,△的周长为8(1)求椭圆的方程;(2)设点的坐标为①当,,成等差数列时,求点的坐标;②若直线、分别与直线交于点、,以为直径的圆是否经过某定点?若经过定点,求出定点坐标;若不经过定点,请说明理由20.(12分)已知函数(e为自然对数的底数),(),.(1)若直线与函数,的图象都相切,求a的值;(2)若方程有两个不同的实数解,求a的取值范围.21.(12分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值22.(10分)已知函数,为自然对数的底数.(1)当时,证明,,;(2)若函数在上存在极值点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.2、D【解析】由,化简得,结合等比数列、等差数列的定义可求解.【详解】由,可得,所以,又由,,所以是首项为,公比为2的等比数列,所以,,,,所以不是等差数列;不等于常数,所以不是等比数列.故选:D.3、B【解析】根据抛物线和写出焦点坐标,利用题干中的坐标相等,解出,结合从而求出答案.【详解】抛物线的焦点为,双曲线的,,所以,所以双曲线的右焦点为:,由题意,,两边平方解得,,则双曲线的渐近线方程为:.故选:B.4、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.5、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.6、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C7、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A8、D【解析】根据一元二次不等式的解集的情况得出二次项系数大于零,根的判别式小于零,可得出,再将化为,由和均值不等式可求得最小值.【详解】由题意可得:,,可以得到,而,可以令,则有,当且仅当取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查均值不等式,关键在于由一元二次不等式的解集的情况得出的关系,再将所求的式子运用不等式的性质降低元的个数,运用均值不等式,是中档题.9、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.10、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.11、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.12、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先通过讨论分成斜率存在和不存在两种情况,然后再按照两直线平行的判定方法求解即可.【详解】由已知可得,当时,两直线分别为和,此时,两直线不平行;当时,要使得两直线平行,即,解得,.故答案为:14、【解析】利用导数可求得函数的最小值,要使函数有零点,只要,求得函数的最小值,即可得解.【详解】解:,当时,,当时,,所以在上递减,在上递增,所以,因为函数有零点,所以,解得.故答案为:.15、【解析】由于“,”是真命题,则实数m的取值集合就是函数的函数值的集合,据此即可求出结果.【详解】由于“,”是真命题,则实数m的取值集合就是函数的函数值的集合,即.故答案为:【点睛】本题主要考查了存在量词命题的概念的理解,以及数学转换思想,属于基础题.16、【解析】取的中点,连接,,过点A作,垂足为,设,利用三角形的边角关系求出,利用锥体的体积公式求出的值,确定三棱锥外接球的球心,求解外接球的半径,由表面积公式求解即可【详解】取的中点,连接,,过点A作,交DE的延长线于点,所以为二面角的平面角,设,则,,所以,所以,EH=,因为三棱锥的体积为,所以,解得:,,设外接圆的圆心为,三棱锥外接球的球心为,连接,,,过点O作OF⊥AH于点F,则,,,,设,则,,由勾股定理得:,解得:,所以三棱锥外接球的半径满足,则三棱锥的外接球的表面积为故答案为:【点睛】本题考查了几何体的外接球问题,棱锥的体积公式的理解与应用,解题的关键是确定外接球球心的位置,三棱锥的外接球的球心在过各面外心且与此面垂直的直线上,由此结论可以找到外接球的球心,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用公式直接将椭圆的参数方程转化为普通方程即可.(2)首先求出直线的参数方程,代入椭圆的普通方程得到,再利用直线参数方程的几何意义求弦长即可.【详解】(1)因为曲线(为参数),所以曲线的普通方程为:.(2)由题知:直线的参数方程为(为参数),将直线的参数方程代入,得.,.所以.18、(1);(2)或.【解析】(1)两点式求AB所在直线的斜率,结合点坐标求AB的垂直平分线,根据已知确定圆心、半径即可得圆C的方程;(2)求AB所在直线方程,几何关系求弦长,由三角形面积求点线距离,设M所在直线为,由点线距离公式列方程求参数,进而联立直线与圆C求M的坐标【小问1详解】由题意知,AB所在直线的斜率为,又,中点为,所以线段AB的垂直平分线为,即,联立,得,半径,所以圆C的方程为.【小问2详解】由题意,AB所在直线方程为,即,圆心到直线AB的距离为,故,因为三角形MAB的面积为,则点M到直线AB的距离为,设点M所在直线方程为,所以,所以或,当时,联立得:或,当时,联立,无解;所以或19、(1);(2)①或;②过定点、,理由见解析.【解析】(1)由焦点三角形的周长、离心率求椭圆参数,即可得椭圆方程.(2)①由(1)可得,结合椭圆的定义求,即可确定的坐标;②由题设,求直线、的方程,进而求、坐标,即可得为直径的圆的方程,令求横坐标,即可得定点.【小问1详解】由题设,易知:,可得,则,∴椭圆.【小问2详解】①由(1)知:,令,则,∴,解得,故,此时或②由(1),,,∴可令直线:,直线:,∴将代入直线可得:,,则圆心且半径为,∴为直径的圆为,当时,,又,∴,可得或.∴为直径的圆过定点、.【点睛】关键点点睛:第二问,应用点斜式写出直线、的方程,再求、坐标,根据定义求为直径的圆的方程,最后令及在椭圆上求定点.20、(1);(2).【解析】(1)根据导数的几何意义进行求解即可;(2)利用常变量分离法,通过构造新函数,由方程有两个不同的实数解问题,转化为两个函数的图象有两个交点问题,利用导数进行求解即可.【小问1详解】设曲线的切点坐标为,由,所以过该切点的切线的斜率为,因此该切线方程为:,因为直线与函数的图象相切,所以,因为直线与函数的图象相切,且函数过原点,所以曲线的切点为,于是有,即;【小问2详解】由可得:,当时,显然不成立,当时,由,设函数,,,当时,,单调递减,当时,,单调递减,当时,,单调递增,因此当时,函数有最小值,最小值为,而,当时,,函数图象如下图所示:方程有两个不同的实数解,转化为函数和函数的图象,在当时,有两个不同的交点,由图象可知:,故a的取值范围为.【点睛】关键点睛:利用常变量分离法,结合转化法进行求解是解题的关键.21、(1);(2).【解析】(1)由,可得,再利用数量积运算性质即可得出;(2)以为一组基底,设与所成的角为,由求解.【小问1详解】,,,,∴,;【小问2详解】∵,,∴,∵,∴,∵=8,∴,设与所成的角为,则.22、(1)证明见解析:(2)【解析】(1)代入,求导分析函数单调性,再的最小值即可证明.(2),若函数在上存在两个极值点,则在上有根.再分,与,利用函数的零点存在定理讨论导函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论