版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省山东师大附中2026届数学高二上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.2.我国古代铜钱蕴含了“外圆内方”“天地合一”的思想.现有一铜钱如图,其中圆的半径为r,正方形的边长为,若在圆内随即取点,取自阴影部分的概率是p,则圆周率的值为()A. B.C. D.3.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点4.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.05.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.6.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.已知抛物线的焦点是双曲线的一个焦点,则双曲线的渐近线方程为()A. B.C. D.9.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值10.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.8111.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.12.直线在y轴上的截距为()A.-1 B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标为__________14.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.15.已知抛物线的焦点为,准线为,过点的直线与抛物线交于A,B两点(点B在第一象限),与准线交于点P.若,,则____________.16.已知双曲线的两条渐近线的夹角为,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线经过点,且满足下列条件,求相应的方程.(1)过点;(2)与直线垂直.18.(12分)在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点(1)求证:平面ABCD;(2)求直线AB与平面PBC所成角的正弦值19.(12分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间20.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值21.(12分)在空间直角坐标系Oxyz中,O为原点,已知点,,,设向量,.(1)求与夹角的余弦值;(2)若与互相垂直,求实数k的值.22.(10分)已知椭圆一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.2、B【解析】根据圆和正方形的面积公式结合几何概型概率公式求解即可.【详解】由可得故选:B3、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A4、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B5、C【解析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C6、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.7、A【解析】根据充分条件和必要条件的定义判断即可得正确选项.【详解】若,则,可得,所以,可得,故充分性成立,取,,满足,但,无意义得不出,故必要性不成立,所以是的充分不必要条件,故选:A.8、B【解析】根据抛物线和写出焦点坐标,利用题干中的坐标相等,解出,结合从而求出答案.【详解】抛物线的焦点为,双曲线的,,所以,所以双曲线的右焦点为:,由题意,,两边平方解得,,则双曲线的渐近线方程为:.故选:B.9、A【解析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A10、A【解析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A11、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.12、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】化成标准形式,结合焦点定义即可求解.【详解】由,得,故抛物线的焦点坐标为故答案为:14、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.15、【解析】过点作,垂足为,过点作,垂足为,然后根据抛物线的定义和三角形相似的关系可求得结果【详解】过点作,垂足为,过点作,垂足为,由抛物线的定义可知,,不妨设,因为,所以,因为∽,所以,即,所以,所以,因为与反向,所以.故答案为:16、或【解析】首先判断渐近线的倾斜角,再求的值.【详解】由条件可知双曲线的其中一条渐近线方程是,因为两条渐近线的夹角是,所以直线的倾斜角是或,即或.故答案为:或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)直接利用两点式写出直线的方程;(2)先求出直线的斜率,由点斜式写出直线的方程.【小问1详解】直线经过,两点,由两点式得直线的方程为.【小问2详解】与直线垂直直线的斜率为由点斜式得直线的方程为.18、(1)证明见解析,(2)【解析】(1)题中易得,,利用勾股定理可得,从而可证得线面垂直;(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,用空间向量法求线面角的正弦值【详解】(1)证明:在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点,,,,,,,平面ABCD(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,0,,,0,,,,,,设平面PBC的法向量y,,则,取,得1,,设直线AB与平面PBC所成角,直线AB与平面PBC所成角的正弦值为:【点睛】本题考查线面垂直的证明,考查空间向量法求线面角.空间角的求法一般都是建立空间直角坐标系,用空间向量法求得空间角19、(1);(2)在内单调递减,在内单调递增【解析】(1)由题意求导可得,代入可得(1),从而求,进而求切线方程;(2)的定义域为,,从而求单调性【详解】解:(1)因为在处切线垂直于,所以(2)因为的定义域为当时,当时,在内单调递减,在内单调递增【点睛】本题考查导数的几何意义,利用导数研究函数的单调性,属于基础题.20、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为21、(1)(2)【解析】(1)由向量的坐标先求出,,,由向量的夹角公式可得答案.(2)由题意可得,从而求出参数的值【小问1详解】由题,,,故,,,所以故与夹角余弦值为.【小问2详解】由与的互相垂直知,,,即22、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都一诊考试试题及答案
- 神经外科主治试题及答案
- 零食小作坊卫生管理制度
- 卫生罚款制度
- 甜品店卫生规则制度
- 肝胆术后黄疸的液体治疗策略优化
- 基督教卫生管理制度
- 前厅卫生管理制度
- 卫生间门前三包制度规定
- 卫生部安全输血制度
- 2026年及未来5年市场数据中国集装箱物流行业市场发展数据监测及投资战略规划报告
- 中小学人工智能教育三年发展规划(2026-2028)7500字完整方案目标务实真能落地
- 七年级地理下册(人教版)东半球其他的国家和地区-欧洲西部自然环境教学设计
- 口腔现场义诊培训
- 学校中层管理岗位职责及分工明细(2026年版)
- 江苏省南京市六校联合体2026届高一数学第一学期期末监测试题含解析
- 就业部门内控制度
- 2026届江苏省徐州市侯集高级中学高一上数学期末复习检测试题含解析
- 2026中国电信四川公司校园招聘备考题库附答案
- 住院患者安全告知
- 2025年山东省济南市中考地理试题(含答案)
评论
0/150
提交评论