版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古锦山蒙古族中学2026届高二数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线垂直,则()A. B.C. D.32.设等差数列,的前n项和分别是,若,则()A. B.C. D.3.过抛物线的焦点作直线l,交抛物线与A、B两点,若线段中点的纵坐标为3,则等于()A.10 B.8C.6 D.44.点到直线的距离为A.1 B.2C.3 D.45.在等比数列中,,,则等于()A. B.5C. D.96.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.7.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-138.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.9.函数的单调递减区间为()A. B.C. D.10.下列曲线中,与双曲线有相同渐近线是()A. B.C. D.11.如图,已知、分别是椭圆的左、右焦点,点、在椭圆上,四边形是梯形,,且,则的面积为()A. B.C. D.12.已知空间向量,,,则()A.4 B.-4C.0 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.14.已知正方体,点在底面内运动,且始终保持平面,设直线与底面所成的角为,则的最大值为______.15.设,复数,,若是纯虚数,则的虛部为_________.16.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分18.(12分)某校高三年级进行了一次数学测试,全年级学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若(1)求a,b的值;(2)若成绩落在区间内的人数为36人,请估计该校高三学生的人数19.(12分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.20.(12分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.21.(12分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.22.(10分)已知函数(1)讨论函数的单调性;(2)若,证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.2、C【解析】结合等差数列前项和公式求得正确答案.【详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C3、B【解析】根据抛物线的定义求解【详解】抛物线的焦点为,准线方程为,设,则,所以,故选:B4、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.5、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D6、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.7、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.8、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B9、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.10、B【解析】求出已知双曲线的渐近线方程,逐一验证即可.【详解】双曲线的渐近线方程为,而双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为.故选:B11、A【解析】设点关于原点的对称点为点,连接、,分析可知、、三点共线,设点、,设直线的方程为,分析可知,将直线的方程与椭圆的方程联立,列出韦达定理,求出的值,可得出的值,再利用三角形的面积公式可求得结果.【详解】设点关于原点的对称点为点,连接、,如下图所示:因为为、的中点,则四边形为平行四边形,可得且,因为,故、、三点共线,设、,易知点,,,由题意可知,,可得,若直线与轴重合,设,,则,不合乎题意;设直线的方程为,联立,可得,由韦达定理可得,得,,则,可得,故,因此,.故选:A.12、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;14、【解析】画出立体图形,因为面面,在底面内运动,且始终保持平面,可得点在线段上运动,因为面面,直线与底面所成的角和直线与底面所成的角相等,即可求得答案.【详解】连接和,面面在底面内运动,且始终保持平面可得点在线段上运动,面面,直线与底面所成的角和直线与底面所成的角相等面直线与底面所成的角为:有图像可知:长是定值,当最短时,,即最大,即角最大设正方体的边长为,故故答案为:【点睛】本题考查了求线面角的最大值,解题是掌握线面角的定义和处理动点问题时,应画出图形,寻找几何关系,考查了分析能力和计算能力,属于难题.15、【解析】由复数除法的运算法则求出,又是纯虚数,可求出,从而根据共轭复数及虚部的定义即可求解.【详解】解:因为复数,,所以,又是纯虚数,所以,所以,所以所以的虛部为,故答案:.16、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分18、(1)(2)人【解析】(1)由频率分布直方图的性质求得,结合,即可求得的值;(2)由频率分布直方图求得落在区间内的概率,进而求得该校高三年级的人数【小问1详解】解:由频率分布直方图的性质,可得:,可得,又由,可得解得;【小问2详解】解:由频率分布直方图可得,成绩落在区间内的概率为,则该校高三年级的人数为(人)19、(1);(2)存在,定圆.【解析】(1)由题可得,,即求;(2)由题可设直线的方程,利用韦达定理及条件可得直线恒过定点,则以为直径的圆适合题意,即得.【小问1详解】由题设知,椭圆上顶点为,且在直线上∴,即又点在椭圆上,∴解得,∴椭圆C的方程为;【小问2详解】设,,当直线斜率存在,设直线为:联立方程,化简得∴,,∵,∴又∵,∴将,代入,化简得,即则或,①当时,直线恒过定点与点重合,不符题意.②当时,直线恒过定点,记为点,∵,∴以为直径,其中点为圆心的圆恒经过两点,则圆方程为:;当直线斜率不存在,设方程为,,,且,,∴,解得或(舍去),,取,以为直径作圆,圆方程为:恒经过两点,综上所述,存在定圆恒经过两点.【点睛】关键点点睛:本题第二问的关键是证明直线恒过定点,结合条件可得以为直径的圆,适合题意即得.20、(1)证明见解析;(2).【解析】(1)根据等边三角形的性质、线面垂直的性质,结合面面垂直的判定定理进行证明即可;(2)利用余弦定理,结合三棱锥的等积性进行求解即可.【小问1详解】证明:设,因为是等边三角形,且,所以是的中点,则.又,所以,所以,即.又平面平面,所以.又,所以平面.因为平面,所以平面平面.【小问2详解】解:因为,所以.在中,,所以,则又平面,所以.如图,连接,则,所以.设点到平面的距离为,因为,所以,解得,即点到平面的距离为.21、(1)2(2)当时,没有极值;当时,极大值为,极小值为.【解析】(1)当时,,可得:.,,得或,列出函数单调性表格,即可最大值;(2),令,得或,分别讨论和,即可求得的极值.【详解】(1)当时,,所以.令,得或,列表如下:-2-11+0-0+极大值极小值由于,,所以函数在区间上的最大值为2.(2),令,得或.当时,,所以函数在上单调递增,无极值.当时,列表如下:+0-0+极大值极小值函数的极大值为,极小值为.【点睛】本题主要考查根据导数求函数单调性和极值,解题关键是掌握导数求单调性的方法和极值定义,考查分析能力和计算能力,属于中档题.22、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;(2)见详解【解析】(1)对函数进行求导,然后根据参数进行分类讨论;(2)构造函数,求函数的最小值即可证出.【详解】(1)的定义域为,.当时,在上恒成立,所以在上单调递增;当时,时,;时,,所以在上单调递减,在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)当时,.令,,则.,令,.恒成立,所以在上单调递增.因为,,所以存在唯一的,使得,即.①当时,,即,所以在上单调递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国际关系与现代外交政策知识考察试题及答案解析
- 中学第二学期学校德育处工作行事历及德育工作总结
- 2025年数字化转型与企业创新测试题及答案
- 2025年房地产经纪人资格考试考题及答案
- 医院人员紧急替代应急预案
- 矿井防尘工技能培训考试题库及答案
- 2025年班组三级安全安全教育考试试题及答案
- 建设工程施工合同纠纷要素式起诉状模板高清无水印下载
- 化验员求职面试技巧总结
- 2026年智慧城市建设培训
- 2025年海南三亚市吉阳区教育系统公开招聘编制教师122人(第1号)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库参考答案详解
- 托管学校合作合同协议
- 产品销售团队外包协议书
- 2025年医保局支部书记述职报告
- 汽车充电站安全知识培训课件
- 世说新语课件
- 全体教师大会上副校长讲话:点醒了全校200多名教师!毁掉教学质量的不是学生是这7个环节
- 民航招飞pat测试题目及答案
- T-CDLDSA 09-2025 健身龙舞彩带龙 龙舞华夏推广套路技术规范
- DB35-T 2278-2025 医疗保障监测统计指标规范
评论
0/150
提交评论