版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省莆田六中高一数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“,使得”的否定是()A., B.,C., D.,2.下列函数,表示相同函数的是()A., B.,C., D.,3.农业农村部于2021年2月3日发布信息:全国按照主动预防、内外结合、分类施策、有效处置的总体要求,全面排查蝗灾隐患.为了做好蝗虫防控工作,完善应急预案演练,专家假设蝗虫的日增长率为6%,最初有只,则大约经过()天能达到最初的1200倍.(参考数据:,,,)A.122 B.124C.130 D.1364.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.5.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点6.已知全集,集合,则A. B.C. D.7.已知全集,集合,或,则()A. B.或C. D.8.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.下列函数中,在区间上是减函数的是()A. B.C. D.10.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____12.已知集合,,则集合中子集个数是____13.已知直三棱柱的6个顶点都在球O的球面上,若,则球O的半径为________14.若幂函数的图象过点,则___________.15.______________16.已知函数是定义在的奇函数,则实数b的值为_________;若函数,如果对于,,使得,则实数a的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.18.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?19.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.20.已知(1)求;(2)若,求.21.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B2、B【解析】由两个函数相同的定义,定义域相同且对应法则相同,依次判断即可【详解】选项A,一个为指数运算、一个为对数运算,对应法则不同,因此不为相同函数;选项B,,为相同函数;选项C,函数定义域为,函数定义域为,因此不为相同函数;选项D,与函数对应法则不同,因此不为相同函数故选:B3、A【解析】设经过天后蝗虫数量达到原来的倍,列出方程,结合对数的运算性质即可求解【详解】由题意可知,蝗虫最初有只且日增长率为6%;设经过n天后蝗虫数量达到原来的1200倍,则,∴,∴,∵,∴大约经过122天能达到最初的1200倍.故选:A.4、A【解析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.5、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D6、C【解析】由集合,根据补集和并集定义即可求解.【详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【点睛】本题考查了补集和并集的简单运算,属于基础题.7、D【解析】根据交集和补集的定义即可得出答案.【详解】解:因为,或,所以,所以.故选:D8、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件9、D【解析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.10、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题12、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.13、【解析】根据直角三角形的外接圆的直径是直角三角形的斜边,结合球的对称性、勾股定理、直三棱柱的几何性质进行求解即可.【详解】因为,所以三角形是以为斜边的直角三角形,因此三角形的外接圆的直径为,圆心为.因为,所以,在直三棱柱中,侧面是矩形且它的中心即为球心O,球的直径是的长,则,所以球的半径为故答案为:【点睛】本题考查了直三棱柱外接球问题,考查了直观想象能力和数学运算能力.14、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.15、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.16、①.0②.【解析】由,可得,设在的值域为,在上的值域为,根据题意转化为,根据函数的单调性求得函数和的值域,结合集合的运算,列出不等式组,即可求解.【详解】由函数是定义在的奇函数,可得,即,经检验,b=0成立,设在值域为,在上的值域为,对于,,使得,等价于,又由为奇函数,可得,当时,,,所以在的值域为,因为在上单调递增,在上单调递减,可得的最小值为,最大值为,所以函数的值域为,则,解得,即实数的取值范围为.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(1)y(2)ymax=1225,ymin=600【解析】解:(Ⅰ)=(Ⅱ)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600(答)总之,第5天,日销售额y取得最大为1225元;第20天,日销售额y取得最小为600元18、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(2)根据扇形的面积公式,结合基本不等式即可得到结论【详解】(1)设弧长为l,弓形面积为S弓,则α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.当且仅当α2=4,即α=2时,扇形面积有最大值.【点睛】本题主要考查扇形的弧长和扇形面积的计算,要求熟练掌握相应的公式,考查学生的计算能力19、(1),图象见解析;(2)(3)【解析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.20、(1)(2)【解析】(1)利用诱导公式可得答案;(2)利用诱导公式得到,再根据的范围和平方关系可得答案.小问1详解】.【小问2详解】,若,则,所以.21、选择见解析;(1);(2)单调递减区间为.【解析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作交友活动策划方案(3篇)
- 活动成果展示策划方案(3篇)
- 内镜-病理标本管理制度(3篇)
- 2026江苏苏州银行私行客户经理精诚招聘参考考试题库及答案解析
- 2026河南漯河市中医院招聘劳务派遣人员2人考试参考试题及答案解析
- 2026一季度浙商银行舟山分行社会招聘考试参考试题及答案解析
- 2026重庆数子引力网络科技有限公司云南河口项目公司招聘11人备考考试题库及答案解析
- 2026重庆大学城人民小学招聘备考考试题库及答案解析
- 如何有效进行护理带教评估
- 2026汇才(福建泉州市)企业管理有限公司派驻晋江市永和镇招聘5人笔试备考题库及答案解析
- 2026年无锡工艺职业技术学院单招综合素质考试题库附答案解析
- 培训中心收费与退费制度
- 设备部2025年度工作总结报告
- (2026年)压力性损伤的预防和护理课件
- 化工厂设备维护保养培训
- 《交易心理分析》中文
- 交通安全企业培训课件
- 砌筑施工安全教育培训课件
- 客运索道施工方案
- GB/T 7122-2025高强度胶粘剂剥离强度的测定浮辊法
- 人教版七年级数学上册 第四章《整式的加减》单元测试卷(含答案)
评论
0/150
提交评论